Mechanistic Understanding of Electrocatalytic Bio-oil Hydrogenation Rates: Towards a Cost-effective Electrochemical System

电催化生物油氢化速率的机理理解:建立具有成本效益的电化学系统

基本信息

项目摘要

The transportation sector of the U.S. economy generates a large portion of greenhouse gas emissions. Increased use of renewable fuels is one option to reduce transportation-related greenhouse gas emissions and also to secure domestic, sustainable resources for fuel. One promising strategy to help meet transport needs is to synthesize transportation-grade fuels (e.g. liquid hydrocarbons) from biomass waste using renewable electricity, thereby enabling a CO2-neutral fuel source. Bio-oil hydrogenation is known to be the most capital- and energy-intensive steps for biofuel production. One promising approach to address this challenge is to use electrocatalytic hydrogenation (ECH) of biomass because it provides a sustainable method of fuel production and enables the use of renewable electricity. However, improved electrochemical systems and electrocatalysts are needed to make ECH economically competitive. This fundamental research project will address energy efficiency, product yield challenges, and economic analysis of ECH. The project will focus on the molecular pathways and reaction bottlenecks for hydrogenation reactions on metals in the aqueous phase. The research project will provide multidisciplinary training to two PhD students at the University of Michigan and enable them to conduct cutting-edge research in materials synthesis and characterization, computational modeling, and electrocatalysis. Underrepresented minority and female students will be engaged in research and outreach at both the high school and undergraduate level. This fundamental research project will focus on the hypothesis-directed study of electrochemical hydrogenation reactions on platinum group metals and bimetallic alloys in aqueous phase. The research will advance knowledge of metals and bimetallic alloys for use in selective hydrogenation of biomass waste using renewable electricity for sustainable fuel production. The project's goal is to help engender the widespread use of electrocatalytic hydrogenation by focusing on three main areas, the adsorption of organics and hydrogen on metal surfaces, electrocatalytic hydrogenation rates on metals and bimetallics, and using a combination of theory and experiment to understand the link between adsorption and reaction rates and selectivity to predict more active and selective alloys. The team will measure and compute intrinsic reaction rates under controlled conditions on different metals, and then find correlations with adsorption energies and reaction intermediates. The project?s guiding hypothesis is that by starting with metals having moderate activity for hydrogenation and modifying to create bimetallics (e.g., Pt-alloys), one can tune the oxygenated aromatic and hydrogen adsorption energies to increase reaction rates and energy efficiency. To probe the reaction pathway and intermediates, the project will measure adsorption isotherms and use surface-enhanced Raman spectroscopy under reaction conditions to selectively probe species near the electrocatalyst surface. To complement the experimental work, the project includes density functional theory modeling of hydrogen and oxygenated aromatic adsorption energies and ECH activity at applied potentials in water. Fundamental knowledge will result of molecular-level reaction mechanisms for electrocatalytic hydrogenation systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国经济的运输部门产生了很大一部分温室气体排放。增加使用可再生燃料是减少与运输有关的温室气体排放和确保国内可持续燃料资源的一种选择。帮助满足运输需求的一个有希望的战略是利用可再生电力从生物质废物中合成运输级燃料(如液态碳氢化合物),从而实现二氧化碳中性燃料来源。众所周知,生物油加氢是生物燃料生产中资本和能源最密集的步骤。解决这一挑战的一种有希望的方法是使用生物质的电催化氢化(ECH),因为它提供了一种可持续的燃料生产方法,并能够使用可再生电力。然而,需要改进的电化学系统和电催化剂来使ECH具有经济竞争力。这个基础研究项目将解决能源效率,产品产量的挑战,和经济分析的ECH。该项目将侧重于水相中金属氢化反应的分子途径和反应瓶颈。该研究项目将为密歇根大学的两名博士生提供多学科培训,使他们能够在材料合成和表征,计算建模和电催化方面进行前沿研究。代表性不足的少数民族学生和女生将在高中和本科两级参与研究和外联活动。本基础研究计画将以假说为导向,探讨水相中铂族金属及铂族合金之电化学氢化反应。该研究将推进金属和镁合金的知识,用于生物质废物的选择性氢化,使用可再生电力进行可持续燃料生产。该项目的目标是帮助产生广泛使用的电催化氢化,重点放在三个主要领域,吸附的有机物和氢的金属表面,电催化氢化率的金属和双金属,并使用理论和实验相结合,以了解吸附和反应速率和选择性之间的联系,以预测更活跃和选择性的合金。该团队将在不同金属的受控条件下测量和计算固有反应速率,然后找到与吸附能和反应中间体的相关性。项目?的指导假设是通过从具有中等氢化活性的金属开始并改性以产生双金属(例如,Pt-合金),可以调节氧化芳族化合物和氢吸附能以增加反应速率和能量效率。为了探测反应途径和中间体,该项目将测量吸附等温线,并在反应条件下使用表面增强拉曼光谱,以选择性地探测电催化剂表面附近的物种。为了补充实验工作,该项目包括氢和含氧芳烃吸附能和ECH活性在水中施加电位的密度泛函理论建模。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adsorption Energies of Oxygenated Aromatics and Organics on Rhodium and Platinum in Aqueous Phase
  • DOI:
    10.1021/acscatal.0c00803
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Akinola, James;Barth, Isaiah;Singh, Nirala
  • 通讯作者:
    Singh, Nirala
Explaining Kinetic Trends of Inner-Sphere Transition-Metal-Ion Redox Reactions on Metal Electrodes
  • DOI:
    10.1021/acscatal.2c05694
  • 发表时间:
    2023-01-27
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Agarwal, Harsh;Florian, Jacob;Singh, Nirala
  • 通讯作者:
    Singh, Nirala
Temperature dependence of aqueous-phase phenol adsorption on Pt and Rh
Pt 和 Rh 上水相苯酚吸附的温度依赖性
  • DOI:
    10.1007/s10800-020-01503-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Akinola, James;Singh, Nirala
  • 通讯作者:
    Singh, Nirala
Explaining the structure sensitivity of Pt and Rh for aqueous-phase hydrogenation of phenol
  • DOI:
    10.1063/5.0085298
  • 发表时间:
    2022-03-14
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Barth, Isaiah;Akinola, James;Goldsmith, Bryan R.
  • 通讯作者:
    Goldsmith, Bryan R.
Electrocatalytic hydrogenation of phenol on platinum-cobalt alloys
  • DOI:
    10.1016/j.jcat.2024.115331
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    James Akinola;Isaiah Barth;B. Goldsmith;Nirala Singh
  • 通讯作者:
    James Akinola;Isaiah Barth;B. Goldsmith;Nirala Singh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nirala Singh其他文献

Investigation of the Electrocatalytic Activity of Rhodium Sulfide for Hydrogen Evolution and Hydrogen Oxidation
硫化铑析氢和氧化氢电催化活性研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nirala Singh;John W. Hiller;H. Metiu;E. McFarland
  • 通讯作者:
    E. McFarland
Synergistic effects in organic mixtures for enhanced catalytic hydrogenation and hydrodeoxygenation
用于强化催化加氢和加氢脱氧的有机混合物中的协同效应
  • DOI:
    10.1016/j.checat.2024.101135
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    11.600
  • 作者:
    Ankit Mathanker;Sahil Halarnkar;Bolton Tran;Nirala Singh;Bryan R. Goldsmith
  • 通讯作者:
    Bryan R. Goldsmith
A Simple Bond-Additivity Model Explains Large Decreases in Heats of Adsorption in Solvents Versus Gas Phase: A Case Study with Phenol on Pt(111) in Water
简单的键加和模型解释了溶剂中吸附热相对于气相的大幅降低:水中 Pt(111) 上苯酚的案例研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Nirala Singh;C. Campbell
  • 通讯作者:
    C. Campbell
Challenges and opportunities in translating immobilized molecular catalysts for electrochemical COsub2/sub reduction from aqueous-phase batch cells to gas-fed flow electrolyzers
将用于电化学二氧化碳还原的固定化分子催化剂从水相间歇式电池转化为通气体流动电解槽所面临的挑战与机遇
  • DOI:
    10.1016/j.coelec.2023.101362
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Libo Yao;Kevin E. Rivera-Cruz;Nirala Singh;Charles C.L. McCrory
  • 通讯作者:
    Charles C.L. McCrory

Nirala Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nirala Singh', 18)}}的其他基金

CAS-SC: Elucidating the Electrocatalytic Coupling of Nitrate and Carbon Dioxide: Toward Electron Efficient C-N Coupling
CAS-SC:阐明硝酸盐和二氧化碳的电催化耦合:迈向电子高效的 C-N 耦合
  • 批准号:
    2247194
  • 财政年份:
    2023
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant
CAS-SC: Understanding Synergistic Effects of Organic Mixtures for Electrocatalytic Hydrogenation for Fuel Production
CAS-SC:了解有机混合物对燃料生产电催化加氢的协同效应
  • 批准号:
    2320929
  • 财政年份:
    2023
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Interdependence of Cation and Anion Adsorption for Electrocatalytic Nitrate Reduction
职业:了解电催化硝酸盐还原中阳离子和阴离子吸附的相互依赖性
  • 批准号:
    2236770
  • 财政年份:
    2023
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Studentship
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Fellowship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Research Grant
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 53.06万
  • 项目类别:
    ARC Future Fellowships
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
  • 批准号:
    2338209
  • 财政年份:
    2024
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Reducing Inequality in the Returns to K-12 STEM for College and Early Career Outcomes
职业:了解并减少 K-12 STEM 大学和早期职业成果回报的不平等
  • 批准号:
    2338923
  • 财政年份:
    2024
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了