MRI: Development of Real-time 3D Social Signal Imaging System (SSIS)

MRI:实时 3D 社交信号成像系统 (SSIS) 的开发

基本信息

  • 批准号:
    1919965
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project represents a step toward a computational model capable of detecting early social behavioral markers in children at risk for autism spectrum disorder, schizophrenia, and obsessive-compulsive disorder. The real-time 3D Social Signal Imaging System (SSIS) will be designed to precisely measure social signals utilizing cameras producing billions of pixels dozens of times per second. The infrastructure will be designed to enable reconstruction of the 3D geometry of gaze, face, finger, body, and physical appearance. The system is expected to be capable of generating a vast amount of multiple perspective visual data to reconstruct high fidelity 3D signals, needed to enable social intelligence that can decode every nuance of human expression.The ability to discern subtle social signals (e.g., gaze following) can be computationally modeled by leveraging a massive camera system. The Social Signal Imaging System (SSIS) facilitates quantitative measurements of the social signals in 3D at unprecedented temporal and spatial resolutions. This development involves the following steps: (i) Design a distributed visual computing architecture to efficiently process the Multiview visual data streams; (ii) Build a new high-fidelity 3D representation of the view-invariant social signals (gaze, face, finger, body, appearance); (iii) Create a novel 3D dataset of social signals for use in discovering behavioral markers; and (iv) Develop new computer vision algorithms (recognition, matching, tracking, reconstruction) tailored to social signal imaging that minimize computational latency while maintaining accuracy. The system provides a unique characterization of microscopic social signals that enable overcoming fundamental limitations of existing approaches in behavioral assessment of at-risk children. This work impacts diverse disciplines such as robotics, neuroscience, psychology, psychiatry, and medicine. The outcomes will be disseminated through K-12 students from under-represented groups via workshops, machine learning and technology summer camps, and other activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目代表了一个计算模型,能够检测自闭症谱系障碍,精神分裂症和强迫症风险儿童的早期社会行为标志物。实时3D社会信号成像系统(SSIS)将被设计用于精确测量社会信号,利用每秒数十次产生数十亿像素的相机。该基础设施将被设计为能够重建凝视、面部、手指、身体和身体外观的3D几何形状。该系统预计能够生成大量的多视角视觉数据,以重建高保真3D信号,这是实现能够解码人类表达的每一个细微差别的社会智能所需要的。注视跟随)可以通过利用大规模相机系统来计算建模。社会信号成像系统(SSIS)有助于以前所未有的时间和空间分辨率对3D社会信号进行定量测量。该开发涉及以下步骤:(i)设计分布式视觉计算架构以有效地处理多视图视觉数据流;(ii)构建新的视图不变社会信号的高保真3D表示(iii)创建用于发现行为标记的社交信号的新颖3D数据集;以及(iv)开发新的计算机视觉算法(识别、匹配、跟踪、重建),以适应社会信号成像,最大限度地减少计算延迟,同时保持准确性。 该系统提供了一个独特的表征微观社会信号,使克服现有的方法在行为评估的风险儿童的根本局限性。这项工作影响了不同的学科,如机器人,神经科学,心理学,精神病学和医学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hyun Soo Park其他文献

872: A comparison of Ritodrine and Magnesium sulfate for preterm labor: a randomized clinical trial
  • DOI:
    10.1016/j.ajog.2019.11.885
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Young Mi Jung;Seung Mi Lee;Sun Min Kim;Byoung Jae Kim;Seokyung Han;Jeong Woo Park;Hyun Soo Park;Kyung A. Lee;Chan-Wook Park;Jong Kwan Jun;Joong Shin Park
  • 通讯作者:
    Joong Shin Park
Absorption of NOx in packed column (II)
  • DOI:
    10.1007/bf02697336
  • 发表时间:
    1990-01-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Hoo Kun Lee;Myeong Soo Jeong;Joo Wan Park;Hyun Soo Park;Jong Hyun Cho
  • 通讯作者:
    Jong Hyun Cho
An Extended Workspace Mapping Algorithm and its Implementation in a Nuclear Tele-Robotic Control System
  • DOI:
    10.1016/s1474-6670(17)49861-2
  • 发表时间:
    1992-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Young Soo Park;Woo Tae Jeong;Ji Sup Yoon;Jae Sol Lee;Hyun Soo Park;Hyung Suck Cho
  • 通讯作者:
    Hyung Suck Cho
Motion-Based Temporal Alignment of Independently Moving Cameras
独立移动相机基于运动的时间对齐
3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies
通过人工智能辅助制造技术实现的 3D 打印多功能材料
  • DOI:
    10.1038/s41578-020-00235-2
  • 发表时间:
    2020-10-12
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Zhijie Zhu;Daniel Wai Hou Ng;Hyun Soo Park;Michael C. McAlpine
  • 通讯作者:
    Michael C. McAlpine

Hyun Soo Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hyun Soo Park', 18)}}的其他基金

RI: Small: Learning 3D Equivariant Visual Representation for Animals
RI:小:学习动物的 3D 等变视觉表示
  • 批准号:
    2202024
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
NCS-FO: Neural Correlates of Social States in Macaques
NCS-FO:猕猴社会状态的神经相关性
  • 批准号:
    2024581
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: INT: Dense 3D Reconstruction of Dynamic Actors in Natural Environments using Multiple Flying Cameras
合作研究:NRI:INT:使用多个飞行摄像机对自然环境中的动态演员进行密集 3D 重建
  • 批准号:
    2022894
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Raster Multiview Algebra for Unlabeled Visual Data Exploration
职业:用于无标签视觉数据探索的栅格多视图代数
  • 批准号:
    1846031
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CRII: RI: Towards Learning Skills from First Person Demonstrations
CRII:RI:从第一人称演示中学习技能
  • 批准号:
    1755895
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
NRI: Large: Collaborative Research: Human-robot Coordinated Manipulation and Transportation of Large Objects
NRI:大型:协作研究:大型物体的人机协调操纵和运输
  • 批准号:
    1328722
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

MRI: Development of Heterogeneous Edge Computing Platform for Real-Time Scientific Machine Learning
MRI:开发用于实时科学机器学习的异构边缘计算平台
  • 批准号:
    2215789
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MRI: Development of Rydberg Tweezer Quantum Processor with Real-Time Optical Cavity Readout
MRI:开发具有实时光腔读出功能的里德堡镊子量子处理器
  • 批准号:
    2216201
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MRI: Development of A Real Time Antenna Metrology System for the Large Millimeter Telescope
MRI:大型毫米望远镜实时天线计量系统的开发
  • 批准号:
    2117422
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Development of a real-time fetal brain tracking method to be applied to BOLD MRI and diffusion MRI aimed at monitoring cerebral development in-utero
开发实时胎儿大脑追踪方法,应用于 BOLD MRI 和扩散 MRI,旨在监测子宫内大脑发育
  • 批准号:
    2444304
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
MRI: Development of a Real-world Microgrid Simulation/Testing Instrument
MRI:开发真实世界的微电网模拟/测试仪器
  • 批准号:
    1828443
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MRI: Development of iSNARLD (Instrument for Situational Network Awareness for Real-time and Long-term Data)
MRI:iSNARLD(实时和长期数据情境网络感知工具)的开发
  • 批准号:
    1626338
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MRI: Development of an Instrument for Precision Controlled Radiation Exposures, Charged Beam Profile Measurement, and Real-time Fluence Monitoring Beyond 10^16 1-MeV-n-equivalent
MRI:开发用于精确控制辐射暴露、带电束轮廓测量和超过 10^16 1-MeV-n 当量的实时注量监测的仪器
  • 批准号:
    1623479
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MRI: Development of a Scalable High Performance Computing System in Support of the Lattice Light-sheet Microscope for Real-time Three-dimensional Imaging of Living Cells
MRI:开发可扩展的高性能计算系统,支持晶格光片显微镜对活细胞进行实时三维成像
  • 批准号:
    1626579
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Development and validation of the real-time quantification of cerebral blood flow using an arterial spin labeling MRI
使用动脉自旋标记 MRI 实时定量脑血流的开发和验证
  • 批准号:
    25351003
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of real time evaluation method of GRF using viscographic MRI.
使用粘性 MRI 开发 GRF 实时评估方法。
  • 批准号:
    25461260
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了