DMREF: Design of Organic-Inorganic Membranes for Extreme Chemical Environments

DMREF:极端化学环境下的有机-无机膜设计

基本信息

  • 批准号:
    1921873
  • 负责人:
  • 金额:
    $ 173.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Non-Technical Description: People use many chemical products in their day-to-day lives. Medicines, makeup, fuel, glues, and plastics are all chemicals. Making these products requires separating mixtures of many chemicals into single streams of pure chemicals. About one tenth of the world's energy use goes to purifying chemicals. Purifying chemicals with membranes could lower this energy use by ninety percent. Membranes are very thin materials with very small pores that separate chemicals by size and type. Unfortunately, current membrane materials do not work for many purification processes. Plastic membranes are easy to make in large amounts but dissolve in many chemical mixtures. Inorganic membranes are hard to make in large amounts but are stable in most chemical mixtures. This project explores a new way to add inorganics to plastic membranes. These new membranes are easy to make in large amounts and more stable in chemical mixtures. Because these inorganics can be added to plastics in many ways, trial-and-error testing is impractical. Instead, this project uses computational simulations and data analytics to speed up discovery of the best membranes. Students on this project will be trained in membrane science, computational simulations, big data science, and materials testing. This project also supports computational materials science in Georgia Tech's open-access, student-run Materials Innovation and Learning Lab (The MILL). The MILL provides students with free access to materials research tools. Hundreds of students get trained on these research tools each year. Technical Description: This research project will expand a recently discovered class of hybrid membrane materials created via vapor phase infiltration (VPI), a gas-phase process that infuses polymers with inorganic constituents intermixed at the atomic level. These hybrid membranes show dramatically enhanced stability in organic solvents while retaining salient membrane properties of high permeance and discerning selectivity. Because the design space for such membranes - including polymer chemistry, inorganic chemistry, and hybrid microstructure - is enormous, traditional Edisonian-based materials development methods are impractical. To address this challenge, the research team combines expertise in: (1) phenomenological theory of VPI materials synthesis, (2) membrane and separation science, (3) materials simulations and data-driven design, and (4) advanced statistical algorithms that incorporate known phenomenological physics with limited initial data. Efforts in each of these areas will rapidly steer the search towards chemical, morphological, and processing spaces of opportunity. Specifically, this project will focus on the design of materials synthesis processes for targeted membrane chemistries and microstructures. The outcomes of this research will be (1) the creation of tangible hybrid membranes based on polymers of intrinsic micro-porosity with superior performance and stability, (2) the identification of key physiochemical descriptors for controlling structure and performance in these hybrid membranes, and (3) the development of new strategies for handling data sparsity and physical phenomena integration into materials informatics-based design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:人们在日常生活中使用许多化学产品。药品、化妆品、燃料、胶水和塑料都是化学品。制造这些产品需要将许多化学品的混合物分离成单一的纯化学品流。世界上大约十分之一的能源用于净化化学品。用膜净化化学品可以降低90%的能源消耗。膜是一种非常薄的材料,具有非常小的孔,可以根据大小和类型将化学物质分开。不幸的是,目前的膜材料并不适用于许多净化过程。塑料薄膜很容易大量制造,但在许多化学混合物中溶解。无机膜很难大量制造,但在大多数化学混合物中是稳定的。本项目探索了一种向塑料膜中添加无机物的新方法。这些新膜很容易大量制造,在化学混合物中也更稳定。因为这些无机物可以通过多种方式添加到塑料中,所以反复试验是不切实际的。相反,这个项目使用计算模拟和数据分析来加速最佳膜的发现。参与该项目的学生将接受膜科学、计算模拟、大数据科学和材料测试方面的培训。该项目还支持佐治亚理工学院开放获取、学生运营的材料创新与学习实验室(The MILL)的计算材料科学。麻省理工学院为学生提供免费的材料研究工具。每年有数百名学生接受这些研究工具的培训。技术描述:该研究项目将扩展最近发现的一类通过气相渗透(VPI)产生的杂化膜材料,这是一种气相过程,将聚合物与无机成分混合在原子水平上。这些杂化膜在有机溶剂中表现出显著增强的稳定性,同时保留了高通透性和选择性的突出膜特性。因为这种膜的设计空间——包括聚合物化学、无机化学和混合微观结构——是巨大的,传统的爱迪生基材料开发方法是不切实际的。为了应对这一挑战,研究团队结合了以下方面的专业知识:(1)VPI材料合成的现象学理论,(2)膜和分离科学,(3)材料模拟和数据驱动设计,以及(4)将已知现象学物理学与有限的初始数据结合起来的先进统计算法。在这些领域的努力将迅速引导人们寻找化学、形态和加工领域的机会。具体来说,该项目将侧重于设计靶向膜化学和微结构的材料合成工艺。本研究的结果将是(1)基于具有优异性能和稳定性的固有微孔隙聚合物的有形杂化膜的创建,(2)确定控制这些杂化膜结构和性能的关键物理化学描述符,以及(3)开发处理数据稀疏性和物理现象的新策略,将其整合到基于材料信息学的设计中。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vapor-Phase-Infiltrated AlO x /PIM-1 “Hybrid Scaffolds” as Solution-Processable Amine Supports for CO 2 Adsorption
气相渗透 AlO x /PIM-1 – 混合支架 – 作为可溶液加工的胺载体用于 CO 2 吸附
  • DOI:
    10.1021/acsapm.1c00452
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Zhang, Fengyi;McGuinness, Emily K.;Ma, Yao;Ren, Yi;Leisen, Johannes E.;Losego, Mark D.;Lively, Ryan P.
  • 通讯作者:
    Lively, Ryan P.
Vapor phase infiltration of zinc oxide into thin films of cis -polyisoprene rubber
氧化锌气相渗透顺式聚异戊二烯橡胶薄膜
  • DOI:
    10.1039/d0ma00304b
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Pilz, Julian;Coclite, Anna Maria;Losego, Mark D.
  • 通讯作者:
    Losego, Mark D.
Bayesian optimization of functional output in inverse problems
  • DOI:
    10.1007/s11081-021-09677-1
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Chaofan Huang;Yi Ren;Emily K. McGuinness;M. Losego;Ryan P. Lively;V. R. Joseph
  • 通讯作者:
    Chaofan Huang;Yi Ren;Emily K. McGuinness;M. Losego;Ryan P. Lively;V. R. Joseph
Adaptive Exploration and Optimization of Materials Crystal Structures
  • DOI:
    10.1287/ijds.2023.0028
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Krishna;H. Tran;Chao-Ta Huang;R. Ramprasad;V. R. Joseph
  • 通讯作者:
    A. Krishna;H. Tran;Chao-Ta Huang;R. Ramprasad;V. R. Joseph
Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes
  • DOI:
    10.1016/j.matchemphys.2022.126577
  • 发表时间:
    2022-08-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jean, Benjamin C.;Ren, Yi;Losego, Mark D.
  • 通讯作者:
    Losego, Mark D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Losego其他文献

Mark Losego的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Losego', 18)}}的其他基金

CAS: Collaborative Research: New Hybrid Catalysts for Sustainable Cross-Coupling Reactions: Using Atomic Layer Deposition to Immobilize and Enhance Molecular Catalysts
CAS:合作研究:用于可持续交叉偶联反应的新型混合催化剂:利用原子层沉积来固定和增强分子催化剂
  • 批准号:
    1954809
  • 财政年份:
    2020
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
  • 批准号:
    2402407
  • 财政年份:
    2024
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
  • 批准号:
    2419938
  • 财政年份:
    2024
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
Unlocking organic polariton lasers with systematic molecular design
通过系统分子设计解锁有机偏振子激光器
  • 批准号:
    2324344
  • 财政年份:
    2023
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
CAS: Molecular Design of Photoactive Covalent Organic Frameworks Capable of Reductive and Oxidative Degradation of Perfluoroalkyl Substances
CAS:能够还原和氧化降解全氟烷基物质的光活性共价有机框架的分子设计
  • 批准号:
    2247729
  • 财政年份:
    2023
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Design of High Entropy Alloy Electrocatalysts for Mineralization of Total Organic Carbon in Municipal Wastewater
合作研究:城市废水中总有机碳矿化的高熵合金电催化剂设计
  • 批准号:
    2230165
  • 财政年份:
    2023
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
Development of base-metal-catalyzed reactions applicable for new design of organic semiconductor materials
开发适用于有机半导体材料新设计的贱金属催化反应
  • 批准号:
    22KJ0667
  • 财政年份:
    2023
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
  • 批准号:
    2247408
  • 财政年份:
    2023
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
Deliberate Design and Synthesis of Thionated Organic Photosensitizers Activated by One- and Two-Photon Absorption in the Near-Infrared
近红外一光子和二光子吸收激活的硫代有机光敏剂的精心设计与合成
  • 批准号:
    2246805
  • 财政年份:
    2023
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
  • 批准号:
    2339804
  • 财政年份:
    2023
  • 资助金额:
    $ 173.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了