DMREF - Material Intelligence for Accelerated Design of Biologically-Interfaced Single-Layered Devices

DMREF - 用于加速生物接口单层器件设计的材料智能

基本信息

  • 批准号:
    1922020
  • 负责人:
  • 金额:
    $ 175万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Rapidly expanding machine learning (ML) and artificial intelligence (AI) algorithms offer tools for Materials Science and Engineering (MSE), unprecedented just a few of years ago. Even the most advanced traditional tools today (microfluidics, advanced modeling, and supercomputers) cannot keep up with the opportunities offered by data intensive ML/AI tools. The main barrier to achieve the goals laid out in the Materials Genome Initiative (MGI) strategic plan is the difficulty to access clean, curated, comprehensive, meaningful, and most of all, standardized data that can be used in predictive design and modeling of engineered systems, especially true in highly complex and dynamic interfaces between biology and materials science. The ability to deploy these powerful algorithms in domain sciences has remained limited due to the sheer number of dimensions of the parameter space and enormous variability in the data. With the goal of overcoming the current barriers, this project aims to develop a modular software framework, dubbed Materials Intelligence (Mat-I) towards accelerating discovery and innovation in MSE. By exploiting Mat-I technology, the scientific community has the high likelihood of accelerating research, and the collaborating industry (Microsoft, Amazon, Google, NVIDIA, Real Networks, Proctor and Gamble, Allen Institute for Artificial Intelligence, and Intel) will have the crucial tools to develop materials and methods with tailored bio-nano interfaces at the critical intersection of biology, solid-state systems, and informatics in designing devices such as bionanosensors for cancer diagnostics, biomolecular fuel cells for energy harvesting, and neuromorphic networks towards brain-like computers. The project will educate the next generation of innovative scientists, undergraduates, PhDs, and post-doctoral researchers, bolstering the traditional competitive edge of the US at the world stage.The technical aim of the convergence science team, with expertise in genomics, computer science, physics, and materials science and engineering, is to construct a modular Mat-I software framework towards accelerating discovery and innovation. The research will generate and make accessible comprehensive maps among the input space of structures (peptides and single atomic layer solids, the smallest viable entities in biology and physical sciences, respectively) to the output target space of physical properties under a wide range of experimental conditions. The goal is to learn correlations among the three parameters such that, given the sequence/structure representations and experimental conditions, one can then predict the output physical properties, which may be adapted to complex engineered solutions. The proposed approach will employ, enhance, and develop specific mathematical, statistical, and information approaches for discovery in materials engineering that will combine physical, information, and biosciences. Given a set of measurements, the team will apply ML/AI to make inferences and learn a model of the true underlying process and, using these inferences and quantifications of uncertainty, the team will devise test-beds to maximize the information gained with respect to the model. By collecting data and making correlations in an iterative loop, the pace of discovery will be accelerated in closing the knowledge gaps faster than standard methods. The research will use model selection, robust statistics, and adaptive learning, and prototype validation in both static and dynamic representations of bio-nano interfaces. The project will establish foundational rules of a wide range of key wetware devices for technology and medicine through neural network formation by incorporating biology with solid-state devices of the future, the ultimate goal of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
快速发展的机器学习(ML)和人工智能(AI)算法为材料科学与工程(MSE)提供了几年前前所未有的工具。即使是当今最先进的传统工具(微流体、高级建模和超级计算机)也无法跟上数据密集型ML/AI工具提供的机会。实现材料基因组计划(MGI)战略计划中设定的目标的主要障碍是难以获得干净、精心策划、全面、有意义的标准化数据,这些数据可用于工程系统的预测设计和建模,特别是在生物学和材料科学之间高度复杂和动态的界面中。由于参数空间的维度数量和数据的巨大可变性,在领域科学中部署这些强大算法的能力仍然有限。为了克服当前的障碍,该项目旨在开发一个模块化软件框架,称为材料智能(Mat-I),以加速MSE的发现和创新。通过利用mati技术,科学界极有可能加速研究,而合作行业(微软、亚马逊、b谷歌、英伟达、Real Networks、宝洁、艾伦人工智能研究所和英特尔)将拥有关键工具,在生物学、固态系统、信息学应用于设计设备,如用于癌症诊断的生物纳米传感器,用于能量收集的生物分子燃料电池,以及用于类脑计算机的神经形态网络。该项目将培养下一代创新科学家、本科生、博士和博士后研究人员,巩固美国在世界舞台上的传统竞争优势。融合科学团队拥有基因组学、计算机科学、物理学和材料科学与工程方面的专业知识,其技术目标是构建一个模块化的Mat-I软件框架,以加速发现和创新。该研究将在各种实验条件下生成并制作结构(肽和单原子层固体,分别是生物学和物理科学中最小的可行实体)的输入空间到物理性质输出目标空间之间的可访问的综合地图。目标是学习三个参数之间的相关性,这样,给定序列/结构表示和实验条件,就可以预测输出的物理特性,这可能适用于复杂的工程解决方案。提出的方法将采用、加强和发展具体的数学、统计和信息方法,用于材料工程的发现,这些方法将结合物理、信息和生物科学。给定一组测量值,团队将应用ML/AI进行推断并学习真实底层过程的模型,并使用这些推断和不确定性的量化,团队将设计测试平台,以最大限度地获得关于模型的信息。通过收集数据并在迭代循环中建立关联,发现的步伐将比标准方法更快地缩小知识差距。该研究将在生物纳米界面的静态和动态表示中使用模型选择、鲁棒统计、自适应学习和原型验证。该项目的最终目标是将生物学与未来固态器件相结合,通过神经网络形成各种技术和医学关键湿件设备的基本规则。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehmet Sarikaya其他文献

In Situ Observation of Fluorescent-Tagged Peptides Diffusing on Boron Nitride by Single Molecule Tracking
通过单分子追踪原位观察荧光标记肽在氮化硼上的扩散
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peiying Li;Koji Noda;Shuzo Hirata;Martin Vacha;Mehmet Sarikaya;Yuhei Hayamizu
  • 通讯作者:
    Yuhei Hayamizu
Crystallographic Orientation of Self-Assembled Peptides on CVD MoS2 Single Crystal
CVD MoS2 单晶上自组装肽的晶体取向
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linhao Sun;Kouhei Sakuma;Shohei Tsuchiya;Hiroto Fukata;Mehmet Sarikaya;Yuhei Hayamizu
  • 通讯作者:
    Yuhei Hayamizu
Direct nanofabrication and transmission electron microscopy on a suite of easy-to-prepare ultrathin film substrates
  • DOI:
    10.1016/j.tsf.2007.01.021
  • 发表时间:
    2007-05-07
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel B. Allred;Melvin T. Zin;Hong Ma;Mehmet Sarikaya;François Baneyx;Alex K.-Y. Jen;Daniel T. Schwartz
  • 通讯作者:
    Daniel T. Schwartz
界面非平衡系におけるグラファイト吸着ペプチドのモルフォロジー変化
石墨吸附肽在界面非平衡体系中的形态变化
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    土屋 匠平;磯田 盛夫;Mehmet Sarikaya;早水 裕平
  • 通讯作者:
    早水 裕平
ゲーム理論的学習によるMcKibben型空気圧ゴム人工筋のパラメータ推定
基于博弈论学习的 McKibben 型气动橡胶人工肌肉参数估计
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linhao Sun;Kouhei Sakuma;Shohei Tsuchiya;Hiroto Fukata;Mehmet Sarikaya;Yuhei Hayamizu;白土優;内藤諒,小木曽公尚
  • 通讯作者:
    内藤諒,小木曽公尚

Mehmet Sarikaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehmet Sarikaya', 18)}}的其他基金

DMREF - Biologically Interfaced Single Layer Devices
DMREF - 生物接口单层器件
  • 批准号:
    1629071
  • 财政年份:
    2016
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
I-Corps: Peptide-Enabled Dental Technologies
I-Corps:肽牙科技术
  • 批准号:
    1217272
  • 财政年份:
    2012
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
Collaborative Research: Biomolecular Templating of Functional Inorganic Nanostructures
合作研究:功能性无机纳米结构的生物分子模板
  • 批准号:
    0706655
  • 财政年份:
    2007
  • 资助金额:
    $ 175万
  • 项目类别:
    Continuing Grant
MRSEC: Genetically Engineered Materials Science and Engineering Center
MRSEC:基因工程材料科学与工程中心
  • 批准号:
    0520567
  • 财政年份:
    2005
  • 资助金额:
    $ 175万
  • 项目类别:
    Cooperative Agreement
SGER: Atomic-Scale Electronic Properties of Carbon Nanotubes by Transmission Electron Energy Loss Spectroscopy
SGER:通过透射电子能量损失光谱法研究碳纳米管的原子级电子特性
  • 批准号:
    9978835
  • 财政年份:
    1999
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
Acquisition of an Imaging Filter for an Analytical Electron Microscope
分析电子显微镜成像滤光片的采集
  • 批准号:
    9802839
  • 财政年份:
    1998
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
Symposium on Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy, MRS Meeting, Boston, MA, 11/28-12/03/93
通过显微镜和光谱学测定材料纳米级物理性质的研讨会,MRS 会议,马萨诸塞州波士顿,11/28-12/03/93
  • 批准号:
    9320103
  • 财政年份:
    1993
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
Acquisition of a High Resolution Analytical Electron Microscope (Materials Research)
购买高分辨率分析电子显微镜(材料研究)
  • 批准号:
    8520755
  • 财政年份:
    1986
  • 资助金额:
    $ 175万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2404816
  • 财政年份:
    2023
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
Plasma-induced bubbles for heterogeneous metal deposition and material intelligence by applying electric field gradients
通过应用电场梯度等离子体诱导气泡实现异质金属沉积和材料智能
  • 批准号:
    22K18783
  • 财政年份:
    2022
  • 资助金额:
    $ 175万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: EAGER: ADAPT:Charting the Space of Material Microstructures with Artificial Intelligence
合作研究:EAGER:ADAPT:用人工智能绘制材料微观结构的空间
  • 批准号:
    2232967
  • 财政年份:
    2022
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: ADAPT: Charting the Space of Material Microstructures with Artificial Intelligence
合作研究:EAGER:ADAPT:用人工智能绘制材料微观结构的空间
  • 批准号:
    2232968
  • 财政年份:
    2022
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
FMRG: Artificial Intelligence Driven Cybermanufacturing of Quantum Material Architectures
FMRG:人工智能驱动的量子材料架构网络制造
  • 批准号:
    2240407
  • 财政年份:
    2022
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
Material identification of original Jomon materials using deep learning with artificial intelligence (AI)
使用人工智能 (AI) 深度学习对原始绳文材料进行材料识别
  • 批准号:
    21K20060
  • 财政年份:
    2021
  • 资助金额:
    $ 175万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of Next-Generation Machine Intelligence for Predicting Material Properties, Considering the Influence of Experimental Processes and Sample Structures
考虑实验过程和样品结构的影响,开发用于预测材料特性的下一代机器智能
  • 批准号:
    20K22466
  • 财政年份:
    2020
  • 资助金额:
    $ 175万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Material and Device Building Blocks for Hardware Acceleration of Machine Learning and Artificial Intelligence Algorithms
用于机器学习和人工智能算法硬件加速的材料和设备构建模块
  • 批准号:
    2004791
  • 财政年份:
    2020
  • 资助金额:
    $ 175万
  • 项目类别:
    Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2039794
  • 财政年份:
    2020
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
FMRG: Artificial Intelligence Driven Cybermanufacturing of Quantum Material Architectures
FMRG:人工智能驱动的量子材料架构网络制造
  • 批准号:
    2036359
  • 财政年份:
    2020
  • 资助金额:
    $ 175万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了