Porosity Structure and Earthquake Rupture Dynamics at the GOFAR Fracture Zone

GOFAR断裂带的孔隙结构和地震破裂动力学

基本信息

  • 批准号:
    1922528
  • 负责人:
  • 金额:
    $ 143.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Across the seafloor, faults occur at the edges of tectonic plates where the plates slide laterally past each other. These features are called oceanic transform faults and they have a similarity to hazardous faults on land, such as the San Andreas fault in California. But because the seafloor has a far simpler geology than land the ocean settings are ideal natural laboratories to study some of the important processes occurring throughout the earthquake cycle. Furthermore, scientists have observed that, at transforms, large earthquake activity occurs in fairly regular cycles with repeat times of 5-6 years, allowing experiments to be planned that capture the faults as they experience an earthquake sequence. The understanding that comes from such studies can further the advancement of earthquake prediction. The repeating cycles of earthquakes at one such oceanic transform fault, the Gofar in the east Pacific, was first observed through deployments of seismometers - instruments which measure the motion of the seafloor - around the fault. One factor thought to be important for earthquake generation is the amount of seawater that is present in the top several kilometers of seafloor. Yet, there is little data on fluid distributions within active faults. This experiment will provide such data in the well-studied Gofar region by measuring the ability of the seafloor to conduct electrical current, a property that is directly linked to the amount of seawater in the seafloor. Instruments will be deployed on the seafloor that measure electric and magnetic fields. Signals from a transmitter of electromagnetic energy towed behind the research vessel will be recorded by the seafloor instruments. By surveying different parts of the fault system that behave differently when earthquakes occur, it will be possible to understand better the different properties of the fault and how these relate to seismicity. Early career participants will be invited on the expedition. The project supports the training of graduate students and a postdoctoral investigator.Oceanic transform faults (RTFS) offer a natural laboratory for understanding key processes occurring throughout the earthquake cycle, and an outstanding opportunity to further the advancement of earthquake prediction. The role of fluids in fault processes has been hypothesized, but there is surprisingly little data available on fluid distributions within active fault networks. This experiment would provide such data in a well constrained framework of seismicity studies. A primary reason for studying RTF settings is the relatively predictable cycle of seismicity observed, with quasi-periodicities on the order of 5-6 years. To that end, deployments of ocean bottom seismograph (OBS) instrumentation captured foreshock activity building up to a large M6.0 event across the Gofar RTF in the east Pacific. Another deployment of OBS instruments is planned for the Gofar, starting in late 2019 through 2021, with the aim of capturing the end of two current seismic cycles and the goal of understanding why these faults are so predictable. This experiment will focus on areas with different levels and types of seismicity. Within the Gofar transform is a region that repeatedly inhibits rupture propagation and that primarily fails aseismically. Seismic velocities are significantly different in the seismic rupture region and in the rupture barrier. Pull-apart conditions might allow deep seawater penetration into the fault resulting in persistently high porosity and fluid pore pressures at depth. The net result of these fluids is to promote dilatancy-strengthening of the fault which has been observed to inhibit dynamic deformation. A series of CSEM profiles at different parts of the Gofar system will directly measure seafloor electrical resistivity, a property most closely related to porosity of the crust. The experiment will therefore map porosity variations throughout the system, particularly in the damage zone of primary seismicity and within the area that has been seen to repeatedly inhibit rupture propagation, allowing us to directly test the role of fluids in the seismic cycle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在整个海底,断层发生在构造板块的边缘,板块在那里横向滑动。这些特征被称为海洋转换断层,它们与陆地上的危险断层相似,例如加州的圣安德烈亚斯断层。 但是,由于海底的地质比陆地简单得多,海洋环境是研究整个地震周期中发生的一些重要过程的理想天然实验室。此外,科学家观察到,在转换时,大地震活动以相当有规律的周期发生,重复时间为5-6年,允许计划进行实验,以捕捉断层,因为它们经历了地震序列。从这些研究中获得的认识可以进一步推动地震预测的发展。在东太平洋的戈法尔(Gofar)这样一个海洋转换断层上,地震的重复周期首先是通过在断层周围部署地震仪(测量海底运动的仪器)来观察的。据认为,地震发生的一个重要因素是海底顶部几公里处的海水量。然而,关于活断层内流体分布的资料很少。这项实验将通过测量海底传导电流的能力,在经过充分研究的戈法尔地区提供此类数据,这一特性与海底的海水量直接相关。将在海底部署测量电场和磁场的仪器。海底仪器将记录拖在研究船后面的电磁能发射器发出的信号。通过调查地震发生时表现不同的断层系统的不同部分,将有可能更好地了解断层的不同特性以及这些特性与地震活动性的关系。早期的职业参与者将被邀请参加探险。该项目支持研究生和博士后研究员的培训。海洋转换断层(RTFS)为了解整个地震周期中发生的关键过程提供了一个天然实验室,也是进一步推进地震预测的绝佳机会。流体在断层过程中的作用已经被假设,但令人惊讶的是,在活动断层网络内的流体分布的数据很少。这一实验将在一个严格限制的地震活动性研究框架内提供这种数据。研究RTF设置的一个主要原因是观察到的地震活动周期相对可预测,准周期约为5-6年。为此,部署的海底地震仪(OBS)仪器捕获前震活动,在东太平洋的Gofar RTF上形成一个大型M6.0事件。计划在2019年底至2021年期间在Gofar部署另一个OBS仪器,目的是捕捉当前两个地震周期的结束,并了解为什么这些断层如此可预测。这一试验将侧重于具有不同地震活动水平和类型的地区。在Gofar变换中,有一个区域反复抑制破裂传播,并且主要在抗震方面失败。地震波速度在地震破裂区和破裂屏障区有很大的不同。 拉分条件可能允许深层海水渗透到断层中,导致深度处持续的高孔隙度和流体孔隙压力。这些流体的净结果是促进断层的膨胀-加强,而这种膨胀-加强被观察到抑制动态变形。Gofar系统不同部分的一系列CSEM剖面图将直接测量海底电阻率,这是一个与地壳孔隙度关系最密切的特性。因此,该实验将绘制整个系统的孔隙度变化图,特别是在主要地震活动的破坏区和反复抑制破裂传播的区域内,使我们能够直接测试流体在地震周期中的作用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Evans其他文献

Optical characterisation of three reference Dobsons in the ATMOZ Project – verification of G. M. B. Dobson's original specifications
ATMOZ 项目中三个参考 Dobson 的光学特性 – 验证 G. M. B. Dobson 的原始规格
  • DOI:
    10.5194/amt-11-1989-2018
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Köhler;S. Nevas;G. Mcconville;Robert Evans;M. Smíd;M. Staněk;A. Redondas;Fritz Schönenborn
  • 通讯作者:
    Fritz Schönenborn
Decay of correlation functions in hard-sphere mixtures: structural crossover.
硬球混合物中相关函数的衰减:结构交叉。
  • DOI:
    10.1063/1.1798057
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Grodon;Marjolein Dijkstra;Robert Evans;Roland Roth
  • 通讯作者:
    Roland Roth
Longitudinal shrinkage behaviour of compression wood in radiata pine
  • DOI:
    10.1007/s00226-008-0228-z
  • 发表时间:
    2008-10-11
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Ping Xu;Huawu Liu;Robert Evans;Lloyd A. Donaldson
  • 通讯作者:
    Lloyd A. Donaldson
不同海拔青海云杉木材细胞结构对气候因素的响应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    徐金梅;张冉;吕建雄;Robert Evans
  • 通讯作者:
    Robert Evans
Solvation force in two-dimensional Ising strips.
二维伊辛条中的溶剂力。

Robert Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Evans', 18)}}的其他基金

Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316136
  • 财政年份:
    2024
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dry Rifting In the Albertine-Rhino Graben (DRIAR), Uganda
合作研究:乌干达艾伯丁-犀牛地堑 (DRIAR) 的干裂谷
  • 批准号:
    2021692
  • 财政年份:
    2020
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Marine EM Survey of Fluids in the Alaskan Megathrust
合作研究:阿拉斯加巨型逆冲断层流体的海洋电磁勘探
  • 批准号:
    1654619
  • 财政年份:
    2018
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
RAPID: Collaborative Research: Response to the 2016 M5.8 Pawnee Earthquake: Using MT to map Fluids in Faults
RAPID:协作研究:响应 2016 年 M5.8 波尼地震:使用 MT 绘制断层中的流体图
  • 批准号:
    1664473
  • 财政年份:
    2016
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
MAGIC MT - Uplift of the Appalachians
MAGIC MT - 阿巴拉契亚山脉的隆起
  • 批准号:
    1460257
  • 财政年份:
    2015
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Pilot Study for Electromagnetic Surveying of Freshwater Resources Beneath the US Atlantic Continental Shelf
合作研究:美国大西洋大陆架淡水资源电磁测量试点研究
  • 批准号:
    1459035
  • 财政年份:
    2015
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Structure of the Lithosphere - Asthenosphere Boundary Across the Northeastern US Margin from Seafloor MT Data
从海底 MT 数据看美国东北部边缘的岩石圈-软流圈边界结构
  • 批准号:
    1536161
  • 财政年份:
    2015
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
SBIR Phase I: High Efficiency Gasification of Wood for Integrated Production of Hydrogen, Power, Wood Pellets and Activated Carbon
SBIR 第一阶段:木材高效气化,综合生产氢气、电力、木屑颗粒和活性炭
  • 批准号:
    1047320
  • 财政年份:
    2011
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
MRI-R2: Development of the New Generation of Long-Period Seafloor MT Instrumentation
MRI-R2:新一代长周期海底大地电磁仪器的开发
  • 批准号:
    0958878
  • 财政年份:
    2010
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Collaborative Research: An Earthscope Magnetotelluric Survey of the Southern Cascadia Subduction System, Washington
合作研究:华盛顿州卡斯卡迪亚南部俯冲系统的 Earthscope 大地电磁勘探
  • 批准号:
    0844041
  • 财政年份:
    2009
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant

相似国自然基金

供热小堆核电厂复合隔震结构的动力模型与地震响应规律
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
变电站装配式混凝土结构地震失效风险及设备-结构等风险水准抗震设计方法
  • 批准号:
    2025JJ90154
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
深地空间结构流固耦合地震响应大规模计算方法与高效软件研究
  • 批准号:
    R25E080014
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
城市地下大深度竖井结构地震摇摆响应及损伤破坏机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
考虑轴向约束作用的框架梁抗震机理与设计方法
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
采用UHPC局部增强的高层建筑结构地震损伤跨尺度演化模拟研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
地震作用下高边坡岩体-锚固结构体系动力响应与耦联作用机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
液化场地-装配式地铁车站结构地震失效机理及易损性研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
风-波浪联合作用下高桩承台式海上风力机地震响应规律及抗震性能研 究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于时频分析的隧道结构地震损伤识别与时空全域推演方法
  • 批准号:
    52408443
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Investigating Structure and Seismicity Within the Southern M9.2 1964 Great Alaska Earthquake Rupture Area Using a Dense Node Array
合作研究:使用密集节点阵列调查 1964 年 M9.2 大地震破裂区域南部的结构和地震活动
  • 批准号:
    2207441
  • 财政年份:
    2022
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Roles of rupture complexity, geological structure, stress interaction on earthquake sequences
合作研究:破裂复杂性、地质结构、应力相互作用对地震序列的作用
  • 批准号:
    2328485
  • 财政年份:
    2022
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Investigating the crustal structure and fault geometry of the 2021 Haiti earthquake
研究 2021 年海地地震的地壳结构和断层几何形状
  • 批准号:
    2217976
  • 财政年份:
    2022
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigating Structure and Seismicity Within the Southern M9.2 1964 Great Alaska Earthquake Rupture Area Using a Dense Node Array
合作研究:使用密集节点阵列调查 1964 年 M9.2 大地震破裂区域南部的结构和地震活动
  • 批准号:
    2207389
  • 财政年份:
    2022
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Roles of rupture complexity, geological structure and stress interaction on earthquake sequences
合作研究:破裂复杂性、地质结构和应力相互作用对地震序列的作用
  • 批准号:
    2043281
  • 财政年份:
    2021
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Roles of rupture complexity, geological structure, stress interaction on earthquake sequences
合作研究:破裂复杂性、地质结构、应力相互作用对地震序列的作用
  • 批准号:
    2043064
  • 财政年份:
    2021
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Challenge to the simultaneous estimation of earthquake and subsurface structure based on seismic waveforms
基于地震波形同时估计地震和地下结构的挑战
  • 批准号:
    21K14019
  • 财政年份:
    2021
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Incoming plate and forearc structure of the Semidi and SW Kodiak Segments offshore Alaska Peninsula from 3-D active-source and local earthquake tomography
合作研究:阿拉斯加半岛近海塞米迪和西科迪亚克段的传入板块和弧前结构,来自 3D 主动源和当地地震层析成像
  • 批准号:
    1947758
  • 财政年份:
    2020
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Worst input direction of critical earthquake ground motion for irregular-shaped building structure and its plastic collapse mechanism
不规则形状建筑结构临界地震动最坏输入方向及其塑性倒塌机制
  • 批准号:
    20K14871
  • 财政年份:
    2020
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Full waveform tomography of the 3D structure in and around the source region of the 2011 Tohoku-Oki earthquake
2011 年东北冲地震震源区及其周围 3D 结构的全波形断层扫描
  • 批准号:
    20K04101
  • 财政年份:
    2020
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了