Porosity Structure and Earthquake Rupture Dynamics at the GOFAR Fracture Zone

GOFAR断裂带的孔隙结构和地震破裂动力学

基本信息

  • 批准号:
    1922528
  • 负责人:
  • 金额:
    $ 143.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Across the seafloor, faults occur at the edges of tectonic plates where the plates slide laterally past each other. These features are called oceanic transform faults and they have a similarity to hazardous faults on land, such as the San Andreas fault in California. But because the seafloor has a far simpler geology than land the ocean settings are ideal natural laboratories to study some of the important processes occurring throughout the earthquake cycle. Furthermore, scientists have observed that, at transforms, large earthquake activity occurs in fairly regular cycles with repeat times of 5-6 years, allowing experiments to be planned that capture the faults as they experience an earthquake sequence. The understanding that comes from such studies can further the advancement of earthquake prediction. The repeating cycles of earthquakes at one such oceanic transform fault, the Gofar in the east Pacific, was first observed through deployments of seismometers - instruments which measure the motion of the seafloor - around the fault. One factor thought to be important for earthquake generation is the amount of seawater that is present in the top several kilometers of seafloor. Yet, there is little data on fluid distributions within active faults. This experiment will provide such data in the well-studied Gofar region by measuring the ability of the seafloor to conduct electrical current, a property that is directly linked to the amount of seawater in the seafloor. Instruments will be deployed on the seafloor that measure electric and magnetic fields. Signals from a transmitter of electromagnetic energy towed behind the research vessel will be recorded by the seafloor instruments. By surveying different parts of the fault system that behave differently when earthquakes occur, it will be possible to understand better the different properties of the fault and how these relate to seismicity. Early career participants will be invited on the expedition. The project supports the training of graduate students and a postdoctoral investigator.Oceanic transform faults (RTFS) offer a natural laboratory for understanding key processes occurring throughout the earthquake cycle, and an outstanding opportunity to further the advancement of earthquake prediction. The role of fluids in fault processes has been hypothesized, but there is surprisingly little data available on fluid distributions within active fault networks. This experiment would provide such data in a well constrained framework of seismicity studies. A primary reason for studying RTF settings is the relatively predictable cycle of seismicity observed, with quasi-periodicities on the order of 5-6 years. To that end, deployments of ocean bottom seismograph (OBS) instrumentation captured foreshock activity building up to a large M6.0 event across the Gofar RTF in the east Pacific. Another deployment of OBS instruments is planned for the Gofar, starting in late 2019 through 2021, with the aim of capturing the end of two current seismic cycles and the goal of understanding why these faults are so predictable. This experiment will focus on areas with different levels and types of seismicity. Within the Gofar transform is a region that repeatedly inhibits rupture propagation and that primarily fails aseismically. Seismic velocities are significantly different in the seismic rupture region and in the rupture barrier. Pull-apart conditions might allow deep seawater penetration into the fault resulting in persistently high porosity and fluid pore pressures at depth. The net result of these fluids is to promote dilatancy-strengthening of the fault which has been observed to inhibit dynamic deformation. A series of CSEM profiles at different parts of the Gofar system will directly measure seafloor electrical resistivity, a property most closely related to porosity of the crust. The experiment will therefore map porosity variations throughout the system, particularly in the damage zone of primary seismicity and within the area that has been seen to repeatedly inhibit rupture propagation, allowing us to directly test the role of fluids in the seismic cycle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在整个海底,故障发生在构造板的边缘,板块横向滑动。这些特征称为海洋变换断层,它们与陆地上的危险断层相似,例如加利福尼亚的圣安德烈亚斯断层。 但是,由于海底的地质比土地要简单得多,因此海洋环境是研究整个地震周期中发生的一些重要过程的理想天然实验室。此外,科学家们观察到,在变换时,大地震活动发生在相当规则的周期中,重复时间为5 - 6年,可以计划实验,以捕获它们在经历地震序列的情况下捕获断层。从这些研究带来的理解可以进一步进步地震预测。在一个这样的海洋变换断层(东太平洋的戈法尔)的地震的重复循环首先是通过在断层周围的地震仪的部署(测量海底运动的仪器)来观察到的。人们认为对地震产生很重要的一个因素是海水中存在的海水数量是海底几公里。然而,有效故障中流体分布的数据很少。该实验将通过测量海底进行电流的能力,在良好的戈法尔地区提供此类数据,这是直接与海底海水量有关的特性。仪器将部署在测量电场和磁场的海底上。海底仪器将记录来自研究容器后面的电磁能发射器的信号。通过调查断层系统的不同部分,这些部分在发生地震时行为不同,就可以更好地理解断层的不同特性以及这些与地震相关的关系。早期的职业参与者将被邀请参加探险。该项目支持对研究生的培训和博士后研究员。CeanicTransform Presss(RTFS)为了解整个地震周期中发生的关键过程提供了自然实验室,以及进一步进步地震预测的绝佳机会。假设流体在故障过程中的作用,但是令人惊讶的是,关于活动故障网络中流体分布的可用数据很少。该实验将在良好的地震性研究框架内提供此类数据。研究RTF设置的主要原因是观察到的地震性的相对可预测的循环,准周期性为5 - 6年。为此,海洋底部地震仪(OBS)仪器的部署捕获了东太平洋Gofar RTF的大型M6.0事件的前期活动。计划从2019年底至2021年开始为Gofar部署OBS仪器,目的是捕获两个当前的地震循环的结束,并且目的是了解为什么这些断层是如此可预测的。该实验将集中于具有不同级别和类型地震性的领域。在戈法尔变换内是一个反复抑制破裂繁殖的区域,主要在无性上失败。地震速度在地震破裂区域和破裂屏障中的地震速度显着差异。 拉动条件可能会使海水深入渗透到断层中,从而导致孔隙率持续高,并深入渗透孔隙压力。这些流体的净结果是促进断层的膨胀加剧,这被观察到抑制动态变形。 Gofar系统不同部分的一系列CSEM轮廓将直接测量海底电阻率,这是与地壳的孔隙率最紧密相关的特性。因此,该实验将在整个系统中绘制孔隙率的变化,尤其是在主要地震性的损害区域以及在该区域内反复抑制破裂的繁殖,从而使我们能够直接测试流体在地震周期中的作用。该奖项是NSF的法定任务,反映了通过评估该基金会的智力效果,并反映了基金会的构成效果,并构成了基金会的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Evans其他文献

Optical characterisation of three reference Dobsons in the ATMOZ Project – verification of G. M. B. Dobson's original specifications
ATMOZ 项目中三个参考 Dobson 的光学特性 – 验证 G. M. B. Dobson 的原始规格
  • DOI:
    10.5194/amt-11-1989-2018
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Köhler;S. Nevas;G. Mcconville;Robert Evans;M. Smíd;M. Staněk;A. Redondas;Fritz Schönenborn
  • 通讯作者:
    Fritz Schönenborn
Decay of correlation functions in hard-sphere mixtures: structural crossover.
硬球混合物中相关函数的衰减:结构交叉。
  • DOI:
    10.1063/1.1798057
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Grodon;Marjolein Dijkstra;Robert Evans;Roland Roth
  • 通讯作者:
    Roland Roth
不同海拔青海云杉木材细胞结构对气候因素的响应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    徐金梅;张冉;吕建雄;Robert Evans
  • 通讯作者:
    Robert Evans
Expertise, trading zones and the planning system: A case study of an energy-from-biomass plant
专业知识、贸易区和规划系统:生物质能源工厂案例研究
Solvation force in two-dimensional Ising strips.
二维伊辛条中的溶剂力。

Robert Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Evans', 18)}}的其他基金

Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316136
  • 财政年份:
    2024
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dry Rifting In the Albertine-Rhino Graben (DRIAR), Uganda
合作研究:乌干达艾伯丁-犀牛地堑 (DRIAR) 的干裂谷
  • 批准号:
    2021692
  • 财政年份:
    2020
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Marine EM Survey of Fluids in the Alaskan Megathrust
合作研究:阿拉斯加巨型逆冲断层流体的海洋电磁勘探
  • 批准号:
    1654619
  • 财政年份:
    2018
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
RAPID: Collaborative Research: Response to the 2016 M5.8 Pawnee Earthquake: Using MT to map Fluids in Faults
RAPID:协作研究:响应 2016 年 M5.8 波尼地震:使用 MT 绘制断层中的流体图
  • 批准号:
    1664473
  • 财政年份:
    2016
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
MAGIC MT - Uplift of the Appalachians
MAGIC MT - 阿巴拉契亚山脉的隆起
  • 批准号:
    1460257
  • 财政年份:
    2015
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Pilot Study for Electromagnetic Surveying of Freshwater Resources Beneath the US Atlantic Continental Shelf
合作研究:美国大西洋大陆架淡水资源电磁测量试点研究
  • 批准号:
    1459035
  • 财政年份:
    2015
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Continuing Grant
Structure of the Lithosphere - Asthenosphere Boundary Across the Northeastern US Margin from Seafloor MT Data
从海底 MT 数据看美国东北部边缘的岩石圈-软流圈边界结构
  • 批准号:
    1536161
  • 财政年份:
    2015
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
SBIR Phase I: High Efficiency Gasification of Wood for Integrated Production of Hydrogen, Power, Wood Pellets and Activated Carbon
SBIR 第一阶段:木材高效气化,综合生产氢气、电力、木屑颗粒和活性炭
  • 批准号:
    1047320
  • 财政年份:
    2011
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
MRI-R2: Development of the New Generation of Long-Period Seafloor MT Instrumentation
MRI-R2:新一代长周期海底大地电磁仪器的开发
  • 批准号:
    0958878
  • 财政年份:
    2010
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Collaborative Research: An Earthscope Magnetotelluric Survey of the Southern Cascadia Subduction System, Washington
合作研究:华盛顿州卡斯卡迪亚南部俯冲系统的 Earthscope 大地电磁勘探
  • 批准号:
    0844041
  • 财政年份:
    2009
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant

相似国自然基金

地震作用下珊瑚砂地基-拱形地下结构动力相互作用机理与简化分析方法
  • 批准号:
    52308369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
装配式地铁车站三维隔震结构地震损伤机理与设计方法研究
  • 批准号:
    52378534
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机器学习赋能的预应力混凝土结构全寿命多灾害性能评估:聚焦地震、重载与锈蚀
  • 批准号:
    52311540017
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    国际(地区)合作与交流项目
结构动力问题的高阶精确时步群积分方法及其在大规模地震反应分析中的应用
  • 批准号:
    52378519
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于高铁地震数据的地下介质结构反演与成像方法研究
  • 批准号:
    42374153
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Challenging application of wood materials to masonry structure in Asian developing countries for fundamental seismic performance improvement
亚洲发展中国家木质材料在砖石结构中的应用具有挑战性,以提高基本的抗震性能
  • 批准号:
    23KK0085
  • 财政年份:
    2023
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Verification of the Accuracy of a Hybrid Ground Structure Estimation Method and its Application to Heavy Snowfall Areas to Mitigate Damage
混合地面结构估计方法的准确性验证及其在大雪地区减轻损害的应用
  • 批准号:
    23K04034
  • 财政年份:
    2023
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of Ground-Structure Interaction for Improving the Accuracy of Seismic Assessment of Urban Underground Structures
地基结构相互作用研究提高城市地下结构抗震评估精度
  • 批准号:
    23K04030
  • 财政年份:
    2023
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Investigating Structure and Seismicity Within the Southern M9.2 1964 Great Alaska Earthquake Rupture Area Using a Dense Node Array
合作研究:使用密集节点阵列调查 1964 年 M9.2 大地震破裂区域南部的结构和地震活动
  • 批准号:
    2207441
  • 财政年份:
    2022
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Standard Grant
Clarification of the mechanism of combined and superimposed seismic loads acting on a long-period bridge structure
阐明联合叠加地震荷载作用于长周期桥梁结构的机理
  • 批准号:
    22H01569
  • 财政年份:
    2022
  • 资助金额:
    $ 143.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了