HDR DSC: Engaging Undergraduates in Data and Decisions Research at the Engineering/Biology Interface

HDR DSC:让本科生参与工程/生物学界面的数据和决策研究

基本信息

项目摘要

Recent studies have documented the overall failure of undergraduate programs to prepare students for the complex, professional lives that lie ahead for them. This project addresses a number of these shortfalls, training students to navigate the more complex and uncertain professional terrain associated with interdisciplinary scholarship. The project will launch a unique data sciences program at Virginia Tech (coordinating organization), Morehouse College (HBCU for men, Georgia, implementing organization), Bennett College (HBCU for women, North Carolina, implementing organization), and Hampden-Sydney College (all-male college, Virginia, implementing organization). Our ultimate goal is to provide interdisciplinary education and research opportunities in data and decision science for undergraduate students who are experts in a core discipline of engineering or biology, but who are also proficient in the alternate discipline. Undergraduates from biology and engineering will take classes and conduct research in data science at the engineering/biology interface. A new collaborative, multi-university capstone course "Data and Decisions at the Engineering/Biology Interface" will be launched simultaneously at all four universities. This new course will be driven by the needs of stakeholders from agriculture, conservation, search and rescue, water quality, transportation in inclement weather, and global health and emergency relief.The program will provide unique research opportunities in data and decision science for at least 75 students over 3 years, with about half coming from the two HBCUs. Multi-university student teams (comprised of biologists and engineers) will work together to identify broad social, global, economic, cultural and technical needs/constraints, and determine ways in which their complementary technical skills contribute to addressing complex data science grand challenges at the engineering/biology interface. The teams will submit their data science challenge ideas using sensor-based assets and computational-based assets, competing for slots to participate in a coordinated field campaign in which they will collect data, and learn to make decisions from these data. Team projects will be developed in response to stakeholder needs, using sensor assets available from the participating universities and stakeholders. Students will become well-grounded in the language and tools of computational modeling and data analytics, including machine learning, data-driven discovery of equations and causality, clustering, and neural networks. Students will learn to communicate effectively with fellow students, policymakers, and the public. Following their data sciences experiences, the students are expected to: (1) be conversant with data science research in a second discipline, open to its methods, culture, and perspectives; (2) be able to integrate the second discipline into sustainable new data science research; and (3) conduct interdisciplinary data science research with team members from other fields. The program will provide insights into the attitudes of students towards interdisciplinary data science research, and explore how conceptions of collaboration and career path are affected by their participation in the program.NSF's Harnessing the Data Revolution Data Science Corps program focuses on building capacity for harnessing the data revolution at the local, state, national, and international levels to help unleash the power of data in the service of science and society. Projects in this program are being jointly funded by the NSF's Harnessing the Data Revolution Big Idea; the Directorate for Computer and Information Science and Engineering, Division of Information and Intelligent Systems; the Directorate for Education and Human Resources, Division of Undergraduate Education; the Directorate for Mathematical and Physical Sciences, Division of Mathematical Sciences; and the Directorate for Social, Behavioral and Economic Sciences, Office of Multidisciplinary Activities and Division of Behavioral and Cognitive Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的研究表明,本科课程在为学生未来复杂的职业生活做准备方面总体上是失败的。该项目解决了这些不足之处,培养学生导航与跨学科奖学金相关的更复杂和不确定的专业领域。该项目将在弗吉尼亚理工大学(协调组织)、莫尔豪斯学院(格鲁吉亚男子HBCU,实施组织)、班尼特学院(北卡罗来纳州女子HBCU,实施组织)和汉普顿-悉尼学院(弗吉尼亚州全男子学院,实施组织)推出一个独特的数据科学项目。我们的最终目标是为本科生提供数据和决策科学的跨学科教育和研究机会,这些本科生是工程或生物学核心学科的专家,但也精通替代学科。来自生物学和工程学的本科生将在工程/生物学界面上上课并进行数据科学研究。一个新的合作,多大学的顶点课程“数据和决策在工程/生物学接口”将同时在所有四所大学推出。这门新课程将满足农业、自然保护、搜索和救援、水质、恶劣天气下的交通以及全球健康和紧急救援等利益相关者的需求。该计划将为至少75名学生提供数据和决策科学方面的独特研究机会,为期3年,其中约一半来自两个HBCU。多所大学的学生团队(由生物学家和工程师组成)将共同努力,以确定广泛的社会,全球,经济,文化和技术需求/限制,并确定他们的互补技术技能有助于解决工程/生物学接口复杂的数据科学重大挑战的方式。这些团队将使用基于传感器的资产和基于计算的资产提交他们的数据科学挑战想法,竞争参与协调的现场活动的名额,他们将在其中收集数据,并学习根据这些数据做出决策。团队项目将根据利益相关者的需求开发,使用参与大学和利益相关者提供的传感器资产。学生将在计算建模和数据分析的语言和工具方面打下良好的基础,包括机器学习,数据驱动的方程和因果关系发现,聚类和神经网络。学生将学会与同学,政策制定者和公众进行有效沟通。根据他们的数据科学经验,学生将:(1)熟悉第二学科的数据科学研究,对其方法,文化和观点持开放态度;(2)能够将第二学科融入可持续的新数据科学研究;(3)与其他领域的团队成员进行跨学科的数据科学研究。该计划将深入了解学生对跨学科数据科学研究的态度,并探索他们参与该计划如何影响合作和职业道路的概念。NSF的利用数据革命数据科学团计划侧重于在地方,州,国家,和国际水平,以帮助释放数据的力量,为科学和社会服务。该计划中的项目由美国国家科学基金会利用数据革命大创意联合资助;信息和智能系统部计算机和信息科学与工程理事会;本科教育部教育和人力资源理事会;数学科学部数学和物理科学理事会;该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
有限时间李亚普诺夫指数场是库普曼本征函数吗?
  • DOI:
    10.3390/math9212731
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Bollt, Erik M.;Ross, Shane D.
  • 通讯作者:
    Ross, Shane D.
In the wind: Invasive species travel along predictable atmospheric pathways
在风中:入侵物种沿着可预测的大气路径传播
  • DOI:
    10.1002/eap.2806
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Pretorius, Ilze;Schou, Wayne C.;Richardson, Brian;Ross, Shane D.;Withers, Toni M.;Schmale, David G.;Strand, Tara M.
  • 通讯作者:
    Strand, Tara M.
Transition criteria and phase space structures in a three degree of freedom system with dissipation
耗散三自由度系统中的转变准则和相空间结构
Undulation enables gliding in flying snakes
  • DOI:
    10.1038/s41567-020-0935-4
  • 发表时间:
    2020-06-29
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Yeaton, Isaac J.;Ross, Shane D.;Socha, John J.
  • 通讯作者:
    Socha, John J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Schmale其他文献

David Schmale的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Schmale', 18)}}的其他基金

Collaborative Research: Ideas Lab: Light in the Dark: Fiber Optic Sensing of Climate-Critical Carbon Cycle Components at Water/Ice-Air Interfaces
合作研究:创意实验室:黑暗中的光:水/冰-空气界面气候关键碳循环成分的光纤传感
  • 批准号:
    2322283
  • 财政年份:
    2023
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001119
  • 财政年份:
    2020
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Standard Grant
Atmospheric Transport Barriers and the Biological Invasion of Toxigenic Fungi in the Genus Fusarium
镰刀菌属产毒真菌的大气运输障碍和生物入侵
  • 批准号:
    0919088
  • 财政年份:
    2009
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Standard Grant

相似国自然基金

Gal-1+LDHA+NK 细胞通过诱导 DSC 自噬和蜕膜化障碍引发自然流产的分子机制
  • 批准号:
    24ZR1407500
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
桥粒芯胶黏蛋白DSC2与病毒包膜糖蛋白gH/gL互作介导EBV侵染上皮细胞的分子机制
  • 批准号:
    82372246
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DSC2功能缺失在原发性右心室扩张型心肌病的作用及机制研究
  • 批准号:
    82370357
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于DSC-MRI、DCE-MRI及DKI生理参数与ZEB1表达的关联机制实现复发胶质母细胞瘤ZEB1表达可视化的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
N-糖基化修饰在桥粒蛋白DSC2调控循环肿瘤细胞团形成、存活和转移中的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
早孕期DSC自噬引导蜕膜NK细胞在蜕膜驻留的分子机制研究
  • 批准号:
    82001636
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高分子低温区结晶动力学的Flash DSC研究
  • 批准号:
    21973042
  • 批准年份:
    2019
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
钨钼铌钽基双金属氧化物DSC对电极原位化学共沉淀构筑及催化机理研究
  • 批准号:
    51672208
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
聚合诱导相分离法原位生长可控结构碳催化层及其DSC光电性能优化理论
  • 批准号:
    51162025
  • 批准年份:
    2011
  • 资助金额:
    48.0 万元
  • 项目类别:
    地区科学基金项目
DSC2负性调控食管癌细胞侵袭迁移的分子机制
  • 批准号:
    81101613
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SS-DSC: Stainless steel-concrete composite beams with stainless-steel demountable shear connectors for sustainable infrastructure
SS-DSC:带有不锈钢可拆卸剪力连接件的不锈钢混凝土组合梁,适用于可持续基础设施
  • 批准号:
    EP/Y020278/1
  • 财政年份:
    2023
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Fellowship
DSC MANAGEMENT AND SUPPORT FOR HELPING TO END ADDICTION LONG-TERM INITIATIVE (HEAL). 08/02/2023 - 08/01/2024. N01DA-22-2253. TASK ORDER 75N95023F00009 (TO13).
DSC 管理和支持帮助戒除成瘾长期计划(治愈)。
  • 批准号:
    10939542
  • 财政年份:
    2023
  • 资助金额:
    $ 118.61万
  • 项目类别:
HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
  • 批准号:
    2321574
  • 财政年份:
    2023
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
  • 批准号:
    2242944
  • 财政年份:
    2022
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Standard Grant
HDR DSC: AI across the statewide curriculum
HDR DSC:全州课程中的人工智能
  • 批准号:
    2123440
  • 财政年份:
    2022
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Continuing Grant
Establishing the clinical utility of a consensus DSC-MRI Protocol
建立共识 DSC-MRI 协议的临床实用性
  • 批准号:
    10725276
  • 财政年份:
    2022
  • 资助金额:
    $ 118.61万
  • 项目类别:
Differential scanning calorimeter (DSC) for protein, food processing, material science and nanotechnology research
用于蛋白质、食品加工、材料科学和纳米技术研究的差示扫描量热仪 (DSC)
  • 批准号:
    RTI-2023-00550
  • 财政年份:
    2022
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Research Tools and Instruments
Establishing the clinical utility of a consensus DSC-MRI Protocol
建立共识 DSC-MRI 协议的临床实用性
  • 批准号:
    10459994
  • 财政年份:
    2022
  • 资助金额:
    $ 118.61万
  • 项目类别:
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123237
  • 财政年份:
    2021
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123259
  • 财政年份:
    2021
  • 资助金额:
    $ 118.61万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了