Cybertraining: Pilot: Collaborative Research: Cybertraining for Earth Surface Processes Modelers

网络培训:试点:协作研究:地球表面过程建模者的网络培训

基本信息

  • 批准号:
    1924259
  • 负责人:
  • 金额:
    $ 27.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Living sustainably on a rapidly changing planet is one of the greatest modern scientific and societal challenges. One critical aspect of global change involves the earth's surface itself: the rearrangement of its landforms, soils, and sediments by processes such as landslides, debris flows, floods, and coastal erosion. The Community Surface Dynamics Modeling System, CSDMS, creates cyberinfrastructure to enable advanced numerical models of the earth's surface, its changes through time, and the influence of human activity. However, traditional earth science education does not usually equip students with skills to become effective cyberinfrastructure users and cyberinfrastructure contributors. In order to develop innovative models for analyzing and predicting how the earth's surface responds to environmental change and human influence, the earth surface processes (ESP) modeling community needs a platform to teach modern programming practices and High Performance Computing methods. This project implements a 10-day Cyberinfrastructure in Earth Surface Processes Institute (ESPIn) for graduate students, postdoctoral fellows and early career faculty at the CSDMS Integration Facility at the University of Colorado in Boulder in the summers of 2020-2021 trains the next generation to be innovators. ESPIn aims to transcend the traditional model of department-based graduate education through interdisciplinary, problem-based, "Just in Time Teaching" of model use and development. Over forty participants, selected from diverse disciplinary backgrounds with explicit slots reserved for underrepresented minorities, gain direct experience in converting their research codes into open-source distributed software. ESPIn hosts developed lesson material in online open access educational repositories. ESPIn helps to train a new generation of computationally savvy, integrative scientists, while accomplishing major community science priorities. This project thus serves the national interest, as stated by NSF's mission: to promote the progress of science; to advance the national prosperity and welfare by building a capable geoscience workforce.The Earth Surface Processes Institute (ESPIn) is a 10-day immersive experience for graduate students, postdoctoral fellows and early career faculty, allowing them to make advances on critical earth surface processes research questions with state-of-the-art modeling tools. This project targets learners who would benefit from critical knowledge, skills, and tools to become better cyberinfrastructure users and developers through a careful, inclusive selection procedure. This project aims to help make scientific advances in the study of Earth Surface Processes (ESP) that leverage the powerful and advanced capabilities of new cybertools, such as the Python Modeling Tool. To these ends, the primary objective is to expand the use of cyberinfrastructure among members of the ESP research community with training that (1) increases their competence and confidence with using cyberinfrastructure tools, methods, and resources and (2) moves the larger ESP community towards more widely adopting tools to advance the fundamental science of predicting surface change. Experienced scientists, visiting faculty, and software engineers assist with training and mentoring of the participants. ESPIn offers hands-on training in best programming practices, numerical methods, open source software development, advanced use of version control systems, writing unit tests, HPC-based sensitivity testing and model uncertainty quantification techniques. Several days are dedicated to working collaboratively on research and coding projects. Participants work on developing their own codes, with the intent of making codes more robust and compliant with existing ESP CI frameworks. The Summer Institute is quantitatively evaluated for learning efficacy and evaluations are used to iterate on lesson material quality. ESPIn provides all developed lesson material as online learning and teaching modules and broadly advertises these resources to the geoscience community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在快速变化的地球上可持续地生活是现代科学和社会面临的最大挑战之一。全球变化的一个关键方面涉及地球表面本身:地貌、土壤和沉积物因滑坡、泥石流、洪水和海岸侵蚀等过程而重新排列。社区表面动力学建模系统(CSDMS)创建网络基础设施,以实现地球表面、其随时间的变化以及人类活动影响的高级数值模型。然而,传统的地球科学教育通常不能使学生掌握成为有效的网络基础设施用户和网络基础设施贡献者的技能。为了开发用于分析和预测地球表面如何响应环境变化和人类影响的创新模型,地球表面过程(ESP)建模社区需要一个平台来教授现代编程实践和高性能计算方法。该项目实施了为期10天的网络基础设施在地球表面过程研究所(ESPIn)的研究生,博士后研究员和早期职业教师在CSDMS集成设施在科罗拉多大学博尔德分校在2020-2021年的夏天培养下一代成为创新者。ESPIn旨在通过跨学科、以问题为基础的“及时教学”模式的使用和发展,超越传统的以系为基础的研究生教育模式。超过40名参与者,从不同的学科背景与明确的插槽预留给代表性不足的少数民族,获得直接的经验,将他们的研究代码转化为开源分布式软件。ESPIn主机在在线开放获取教育资源库中开发了课程材料。ESPIn有助于培养新一代精通计算的综合科学家,同时完成主要的社区科学优先事项。因此,正如NSF的使命所述,该项目符合国家利益:促进科学进步;通过建立一支有能力的地球科学工作队伍来促进国家的繁荣和福利。地球表面过程研究所(ESPIn)是研究生,博士后研究员和早期职业教师为期10天的沉浸式体验,使他们能够利用最先进的建模工具在关键的地球表面过程研究问题上取得进展。该项目的目标是学习者谁将受益于关键的知识,技能和工具,成为更好的网络基础设施的用户和开发人员通过仔细,包容性的选择程序。该项目旨在帮助在地球表面过程(ESP)的研究中取得科学进步,这些研究利用了新的网络工具(如Python建模工具)的强大和先进功能。为此,主要目标是通过培训扩大ESP研究社区成员对网络基础设施的使用,(1)提高他们使用网络基础设施工具,方法和资源的能力和信心,(2)推动更大的ESP社区更广泛地采用工具来推进预测地表变化的基础科学。 经验丰富的科学家,访问教师和软件工程师协助培训和指导参与者。ESPIn提供最佳编程实践,数值方法,开源软件开发,版本控制系统的高级使用,编写单元测试,基于HPC的灵敏度测试和模型不确定性量化技术的实践培训。有几天致力于研究和编码项目的合作。参与者致力于开发自己的代码,目的是使代码更加强大并符合现有的ESP CI框架。对暑期学院的学习效果进行定量评估,并利用评估结果来衡量课程材料的质量。ESPIn提供所有开发的课程材料作为在线学习和教学模块,并广泛地向地球科学界提供这些资源。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irina Overeem其他文献

Earth’s sediment cycle during the Anthropocene
人类世期间地球的沉积循环
  • DOI:
    10.1038/s43017-021-00253-w
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    71.500
  • 作者:
    Jaia Syvitski;Juan Restrepo Ángel;Yoshiki Saito;Irina Overeem;Charles J. Vörösmarty;Houjie Wang;Daniel Olago
  • 通讯作者:
    Daniel Olago
Polar Bears: The Natural History of a Threatened Species
  • DOI:
    10.1657/1938-4246-45.3.424
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Irina Overeem
  • 通讯作者:
    Irina Overeem
Warming-driven erosion and sediment transport in cold regions
寒冷地区气候变暖驱动的侵蚀和泥沙输送
  • DOI:
    10.1038/s43017-022-00362-0
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    71.500
  • 作者:
    Ting Zhang;Dongfeng Li;Amy E. East;Desmond E. Walling;Stuart Lane;Irina Overeem;Achim A. Beylich;Michèle Koppes;Xixi Lu
  • 通讯作者:
    Xixi Lu
Investigating changes in proglacial stream suspended sediment concentration and their drivers using large scale remote sensing
利用大规模遥感技术调查冰川前河流悬移质浓度的变化及其驱动因素
  • DOI:
    10.1016/j.geomorph.2025.109664
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Lily K. Vowels;William H. Armstrong;Irina Overeem;Daniel McGrath;Brianna Rick;Adrian Dye;Derek Martin
  • 通讯作者:
    Derek Martin
Quantifying sediment storage on the floodplains outside levees along the lower Yellow River during the years 1580–1849
量化 1580 年至 1849 年黄河下游堤外洪泛区沉积物储存量
  • DOI:
    10.1002/esp.4519
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yunzhen Chen;Irina Overeem;Albert J. Kettner;Shu Gao;James P. M. Syvitski;Yuanjian Wang
  • 通讯作者:
    Yuanjian Wang

Irina Overeem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irina Overeem', 18)}}的其他基金

Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Continuing Grant
RAPID: The effects of extreme drought on sediment transport and deposition in water-supply reservoirs
RAPID:极端干旱对供水水库泥沙输送和沉积的影响
  • 批准号:
    2203159
  • 财政年份:
    2021
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Icy landscapes from the Brooks Range to the Beaufort Sea: Quantifying the mobilization, transport and deposition of sediment and carbon in Arctic Alaska
从布鲁克斯山脉到波弗特海的冰冷景观:量化阿拉斯加北极地区沉积物和碳的动员、运输和沉积
  • 批准号:
    2001225
  • 财政年份:
    2020
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative research: Climate controls on carbon accumulation in upland permafrost at millennial scales
合作研究:千年尺度上气候对高地永久冻土碳积累的控制
  • 批准号:
    1844181
  • 财政年份:
    2020
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Coastal SEES Collaborative Research: Multi-scale modeling and observations of landscape dynamics, mass balance, and network connectivity for a sustainable Ganges-Brahmaputra delta
沿海 SEES 合作研究:可持续恒河-雅鲁藏布江三角洲的景观动态、质量平衡和网络连通性的多尺度建模和观测
  • 批准号:
    1600287
  • 财政年份:
    2016
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Towards a Tiered Permafrost Modeling Cyberinfrastructure
迈向分层永久冻土建模网络基础设施
  • 批准号:
    1503559
  • 财政年份:
    2015
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Belmont Forum-G8 Collaborative Research: DELTAS: Catalyzing action towards sustainability of deltaic systems with an integrated modeling framework for risk assessment
贝尔蒙特论坛-G8 合作研究:三角洲:通过风险评估综合建模框架促进三角洲系统可持续性行动
  • 批准号:
    1342960
  • 财政年份:
    2013
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Continuing Grant
Modeling Floodplain Dynamics: Can the Ganges-Brahmaputra Delta Keep Up with the 21st Century Sea Level Rise?
洪泛区动力学建模:恒河-雅鲁藏布江三角洲能否跟上 21 世纪海平面上升的步伐?
  • 批准号:
    1123880
  • 财政年份:
    2011
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
River Plumes as Indicators for Greenland Ice Sheet Melt
河流羽流作为格陵兰冰盖融化的指标
  • 批准号:
    0909349
  • 财政年份:
    2009
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling Sediment Delivery and Related Stratigraphy in a Tidal Dominated Delta: Fly River, Papua New Guinea
合作研究:模拟潮汐主导三角洲的沉积物输送和相关地层:巴布亚新几内亚弗莱河
  • 批准号:
    0504465
  • 财政年份:
    2005
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320148
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Building a strong community of computational researchers empowered in the use of novel cutting-edge technologies
协作研究:网络培训:试点:建立一个强大的计算研究人员社区,有权使用新颖的尖端技术
  • 批准号:
    2320990
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Operationalizing AI/Machine Learning for Cybersecurity Training
合作研究:网络培训:试点:将人工智能/机器学习应用于网络安全培训
  • 批准号:
    2229976
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Operationalizing AI/Machine Learning for Cybersecurity Training
合作研究:网络培训:试点:将人工智能/机器学习应用于网络安全培训
  • 批准号:
    2229975
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320147
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cybertraining to Develop FAIR Data Competencies for Bioengineering Students
合作研究:网络培训:试点:通过网络培训为生物工程学生培养公平数据能力
  • 批准号:
    2321121
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Building a strong community of computational researchers empowered in the use of novel cutting-edge technologies
协作研究:网络培训:试点:建立一个强大的计算研究人员社区,有权使用新颖的尖端技术
  • 批准号:
    2320991
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2330364
  • 财政年份:
    2023
  • 资助金额:
    $ 27.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了