Reliability Prediction for System Designs with Outsourced Components

使用外包组件的系统设计的可靠性预测

基本信息

  • 批准号:
    1924413
  • 负责人:
  • 金额:
    $ 8.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to predict the system reliability of products whose components are outsourced to outside suppliers. Outsourcing is a common practice because of lower operational and labor costs. The detailed designs of outsourced components, however, are mostly proprietary to component designers and are black boxes to system designers. This poses a great challenge for system designers to estimate the system reliability during the system design stage. This project performs feasibility studies to explore possible ways for system designers to predict the system reliability without revealing proprietary details of outsourced components. As a result, this project offers to help engineers make more reliable, safer, and cheaper products, thereby increasing competitiveness and improving quality of life. This research could impact broad areas of design methodologies and wide engineering applications, ranging from large structural systems to small integrated circuit systems. Beyond engineering design, this project also benefits system engineering, reliability engineering, and operations research where system reliability plays a vital role. This research addresses reliability prediction at both component and system levels. From the perspective of component design, this project determines what reliability information a supplier should provide to system designers and how to do so. The information will be sufficient for system reliability analysis, and the proprietary information of the supplier will also be protected. From the perspective of system design, this project provides theories to system designers so that they could use the above component information to reconstruct component reliability models that accommodate dependencies between component failures, thereby producing an accurate system reliability prediction for decision making on system configurations, optimization, life cycle cost, maintenance, warranty, and so on.
该项目的目标是预测其组件外包给外部供应商的产品的系统可靠性。外包是一种常见的做法,因为较低的运营和劳动力成本。然而,外包组件的详细设计大多是组件设计人员专有的,对系统设计人员来说是黑盒。这给系统设计人员在系统设计阶段评估系统可靠性提出了很大的挑战。本项目进行可行性研究,以探索系统设计人员在不披露外包组件专有细节的情况下预测系统可靠性的可能方法。因此,该项目有助于工程师制造更可靠、更安全、更便宜的产品,从而提高竞争力,改善生活质量。这项研究可能会影响广泛的领域的设计方法和广泛的工程应用,从大型结构系统到小型集成电路系统。除了工程设计之外,该项目还有利于系统工程,可靠性工程和运营研究,其中系统可靠性起着至关重要的作用。这项研究解决了在组件和系统级的可靠性预测。从组件设计的角度来看,该项目确定了供应商应该向系统设计人员提供哪些可靠性信息以及如何提供。这些信息将足以进行系统可靠性分析,供应商的专有信息也将受到保护。从系统设计的角度,本计画提供理论给系统设计者,使他们可以利用上述元件资讯,重建元件可靠性模型,以容纳元件故障间的相依性,进而产生精确的系统可靠性预测,以供系统组态、最佳化、寿命周期成本、维修、保证等决策之用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoping Du其他文献

Maximizing modulation contrast of KTN electro-optic modulator
最大化 KTN 电光调制器的调制对比度
  • DOI:
    10.1016/j.optlaseng.2021.106821
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xiaolei Lv;Jiguang Zhao;Xuping Wang;Xiaoping Du;Bing Liu;Yishuo Song;Hang Chen
  • 通讯作者:
    Hang Chen
Inducible Nitric Oxide Synthase Plays a Stimulatory Role in Platelet Activation.
诱导型一氧化氮合酶在血小板激活中发挥刺激作用。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jasna A Marjanovic;Aleksandra Stojanovic;V. Brovkovych;R. Skidgel;Xiaoping Du
  • 通讯作者:
    Xiaoping Du
Simulation analysis of photometric data for attitude estimation of unresolved space objects
未分辨空间物体姿态估计的光度数据仿真分析
Reliability‐based design optimization with equality constraints
具有等式约束的基于可靠性的设计优化
Remote Sensing Image Scene Classification Model Based on Self-Attention Hybrid Convolutional Layers
基于自注意力混合卷积层的遥感图像场景分类模型

Xiaoping Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoping Du', 18)}}的其他基金

System Analysis and Design under Space- and Time-Dependent Uncertainty
时空不确定性下的系统分析与设计
  • 批准号:
    1923799
  • 财政年份:
    2019
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
System Analysis and Design under Space- and Time-Dependent Uncertainty
时空不确定性下的系统分析与设计
  • 批准号:
    1727329
  • 财政年份:
    2017
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Reliability Prediction for System Designs with Outsourced Components
使用外包组件的系统设计的可靠性预测
  • 批准号:
    1562593
  • 财政年份:
    2016
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Engineering Uncertainty Repository
工程不确定性存储库
  • 批准号:
    1245070
  • 财政年份:
    2013
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Reliability Prediction in Early Design Stages
合作研究:早期设计阶段的定量可靠性预测
  • 批准号:
    1300870
  • 财政年份:
    2013
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Reliability-Based Multidisciplinary Systems Design Under Time-Dependent Uncertainty
瞬态不确定性下基于可靠性的多学科系统设计
  • 批准号:
    1234855
  • 财政年份:
    2012
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Integration of Probabilistic and Statistical Design Methods into Engineering Design Courses
将概率和统计设计方法融入工程设计课程
  • 批准号:
    0341157
  • 财政年份:
    2004
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Accounting for Reliability in Complex Engineering Systems Design
考虑复杂工程系统设计中的可靠性
  • 批准号:
    0400081
  • 财政年份:
    2004
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant

相似海外基金

Fall Prediction Training System using Eye Tracking Measurement Device
使用眼动追踪测量设备的跌倒预测训练系统
  • 批准号:
    23K11951
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural circuitry of predictions and prediction errors in the auditory system
听觉系统中预测和预测误差的神经回路
  • 批准号:
    23K14298
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Clarification of mechanism of floor impact sound of dry-type double floor system and development of highly accurate performance prediction method
干式双层地板系统地板冲击声机理的阐明及高精度性能预测方法的开发
  • 批准号:
    23KJ0484
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
StormHarvester’s ‘AIFloodPredict’: A unique AI engine and rainfall prediction system to accurately predict advanced flood warning in regions of high vulnerability
StormHarvester 的“AIFloodPredict”:独特的人工智能引擎和降雨量预测系统,可准确预测高度脆弱地区的高级洪水预警
  • 批准号:
    10045459
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Collaborative R&D
Volcanic earthquake hazard prediction by sulfide gas detection system
硫化物气体检测系统火山地震灾害预测
  • 批准号:
    23H01664
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Short-term prediction system for occurrence of seaweed-discoloration causing red tide
海藻变色引起赤潮发生的短期预测系统
  • 批准号:
    23K11390
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research and development of a big-data monitoring system for prediction of landslides
滑坡预报大数据监测系统研究与开发
  • 批准号:
    23K19149
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Construction of a learning support system through learning behavior prediction using student modeling
使用学生建模通过学习行为预测构建学习支持系统
  • 批准号:
    23K17604
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
  • 批准号:
    23K09597
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generative-AI based system for accurate prediction of deceased donor liver-transplant (DDLT) outcome and viability
基于生成人工智能的系统,可准确预测已故供体肝移植 (DDLT) 的结果和生存能力
  • 批准号:
    10654166
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了