Collaborative Research: Submesoscale-Resolving Large Eddy Simulations Using Reduced Biogeochemical Models
合作研究:使用简化的生物地球化学模型进行亚尺度解析大涡模拟
基本信息
- 批准号:1924658
- 负责人:
- 金额:$ 24.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Improved understanding of upper ocean biogeochemistry requires a comprehensive look at the interactions between chemical tracers and turbulence at scales smaller than one kilometer (also termed "submesoscale"), but modeling chemical tracers and processes at these small scales requires a tremendous amount of computing power and time. As a result, new reduced biogeochemical models, solved in novel ways, must be developed to perform large eddy simulations (LES) of coupled biogeochemistry and physical processes at these scales. In the proposed project, techniques adapted from the field of combustion for the reduction of large chemical kinetics mechanisms will, for the first time, be used to reduce the size of large ocean biogeochemical models. This interdisciplinary research effort will be undertaken by a collaborative team consisting of an expert in numerical simulations of both reacting and oceanographic flows, a biological oceanographer with extensive knowledge of ocean biogeochemistry, and an expert in chemical model reduction and solution. The tools developed in this project will be made available to the broader oceanographic community, and involvement of interdisciplinary PhD students will expose a new generation to computational methods in oceanography and the Earth sciences. The project will provide research experience and mentorship to undergraduate students, particularly those under-represented in STEM, by designing projects derived from, and complementary to, the proposed research. Ultimately, this project will benefit society through improvements to Earth system models (ESMs) used to study climate, resulting in more accurate predictions of future climate impacts on human health, safety, and property. Solution of the reduced models will be performed on graphical processing units (GPUs) using a high-order Runge-Kutta-Chebyshev (RKC) time integration scheme. This project will culminate in the simulation of realistic ocean scenarios and comparisons will be made with observational data from the Drake Passage to determine the role of submesoscale processes in generating small-scale patchiness in the partial pressure of carbon dioxide. Ultimately, insights obtained from the LES will be used to develop a better understanding of the interactions between small-scale turbulence and biogeochemistry in the upper ocean, including the characteristics, dynamical origins, and effects of tracer patchiness. Integration of complex biogeochemical models within high-fidelity LES has previously been exceptionally difficult, but the proposed model reduction, as well as the use of GPUs and the high-order RKC integrator, will enable high-resolution studies of fully-coupled turbulent and biogeochemical processes at submesoscales. These improvements will be made possible by leveraging techniques from chemical kinetics modeling for combustion, where reduction and integration of large chemical mechanisms in high-fidelity simulations has been common for nearly a decade. The proposed simulation effort will provide insights into the effects of submesoscale turbulence, including wave-driven Langmuir turbulence, on the upper-ocean carbon cycle, and will inform the future development of improved ESMs. In particular, interactions between submesoscale turbulence and biogeochemical tracers are thought to be the cause of tracer patchiness and require substantial further study to develop more accurate subgrid-scale parameterizations for ESMs. Moreover, simulations of the Drake Passage will provide concrete insights and understanding of tracer patchiness for realistic conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了更好地了解上层海洋的地球化学,需要全面研究化学示踪剂和湍流之间的相互作用,尺度小于1公里(也称为“亚中尺度”),但在这些小尺度上模拟化学示踪剂和过程需要大量的计算能力和时间。因此,新的简化的地球化学模式,以新颖的方式解决,必须开发大涡模拟(LES)的耦合地球化学和物理过程在这些尺度上。在拟议的项目中,将首次使用燃烧领域用于减少大型化学动力学机制的技术来缩小大型海洋地球化学模型的规模。这一跨学科的研究工作将由一个合作小组进行,该小组由一名反应流和海洋流数值模拟专家、一名具有丰富海洋生物地球化学知识的生物海洋学家和一名化学模型简化和求解专家组成。该项目开发的工具将提供给更广泛的海洋学社区,跨学科博士生的参与将使新一代人接触海洋学和地球科学的计算方法。该项目将提供研究经验和指导本科生,特别是那些在干代表性不足,通过设计项目衍生,并补充,拟议的研究。最终,该项目将通过改进用于研究气候的地球系统模型(ESM)来造福社会,从而更准确地预测未来气候对人类健康,安全和财产的影响。简化模型的求解将使用高阶龙格-库塔-切比雪夫(RKC)时间积分方案在图形处理单元(GPU)上进行。该项目最终将模拟现实的海洋情景,并将与德雷克海峡的观测数据进行比较,以确定次中尺度过程在产生二氧化碳分压的小尺度斑块方面的作用。最终,从LES获得的见解将用于更好地了解小尺度湍流和海洋地球化学之间的相互作用,在上层海洋,包括特征,动力学起源,示踪剂斑块的影响。在高保真LES的复杂的地球化学模型的集成以前已经非常困难,但建议的模型简化,以及使用GPU和高阶RKC积分器,将使完全耦合的湍流和地球化学过程的高分辨率研究在亚中尺度。这些改进将通过利用燃烧化学动力学建模技术来实现,其中在高保真模拟中减少和整合大型化学机制已经常见了近十年。拟议的模拟工作将深入了解次中尺度湍流(包括波浪驱动的朗缪尔湍流)对上层海洋碳循环的影响,并将为今后开发改进的无害环境措施提供信息。特别是,亚中尺度湍流和地球化学示踪剂之间的相互作用被认为是示踪剂斑块的原因,需要大量的进一步研究,以开发更准确的亚网格尺度参数化的ESM。此外,德雷克海峡的模拟将提供具体的见解和示踪剂斑块的现实条件的理解。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BFM17 v1.0: a reduced biogeochemical flux model for upper-ocean biophysical simulations
BFM17 v1.0:用于上层海洋生物物理模拟的简化生物地球化学通量模型
- DOI:10.5194/gmd-14-2419-2021
- 发表时间:2021
- 期刊:
- 影响因子:5.1
- 作者:Smith, Katherine M.;Kern, Skyler;Hamlington, Peter E.;Zavatarelli, Marco;Pinardi, Nadia;Klee, Emily F.;Niemeyer, Kyle E.
- 通讯作者:Niemeyer, Kyle E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyle Niemeyer其他文献
Kyle Niemeyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyle Niemeyer', 18)}}的其他基金
Frameworks: Collaborative Research: Extensible and Community-Driven Thermodynamics, Transport, and Chemical Kinetics Modeling with Cantera: Expanding to Diverse Scientific Domains
框架:协作研究:可扩展和社区驱动的热力学、传输和化学动力学建模与 Cantera:扩展到不同的科学领域
- 批准号:
1931592 - 财政年份:2020
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Leveraging hardware acceleration for accurate particle dynamics in turbulent flows
合作研究:CDS
- 批准号:
1761683 - 财政年份:2018
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Workshop: Building a sustainable combustion research community
研讨会:建立可持续燃烧研究社区
- 批准号:
1733968 - 财政年份:2017
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: An Intelligent and Adaptive Parallel CPU/GPU Co-Processing Software Library for Accelerating Reactive-Flow Simulations
SI2-SSE:协作研究:用于加速反应流仿真的智能自适应并行 CPU/GPU 协同处理软件库
- 批准号:
1535065 - 财政年份:2015
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: A global census of submesoscale energetics using in-situ drifter observations and a high resolution ocean model
合作研究:利用原位漂流者观测和高分辨率海洋模型进行全球亚尺度能量普查
- 批准号:
2242110 - 财政年份:2023
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: Submesoscale frontal dynamics and exchange at an upwelling bay
合作研究:上升流海湾的亚尺度锋面动力学和交换
- 批准号:
2242163 - 财政年份:2023
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: A global census of submesoscale energetics using in-situ drifter observations and a high resolution ocean model
合作研究:利用原位漂流者观测和高分辨率海洋模型进行全球亚尺度能量普查
- 批准号:
2242109 - 财政年份:2023
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: Submesoscale frontal dynamics and exchange at an upwelling bay
合作研究:上升流海湾的亚尺度锋面动力学和交换
- 批准号:
2242164 - 财政年份:2023
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: Submesoscale frontal dynamics and exchange at an upwelling bay
合作研究:上升流海湾的亚尺度锋面动力学和交换
- 批准号:
2242165 - 财政年份:2023
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: Submesoscale frontal dynamics and exchange at an upwelling bay
合作研究:上升流海湾的亚尺度锋面动力学和交换
- 批准号:
2242166 - 财政年份:2023
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: A global census of submesoscale energetics using in-situ drifter observations and a high resolution ocean model
合作研究:利用原位漂流者观测和高分辨率海洋模型进行全球亚尺度能量普查
- 批准号:
2242111 - 财政年份:2023
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: Tracing the Physics of Submesoscale Entrainment and Subduction
合作研究:追踪亚尺度夹带和俯冲的物理过程
- 批准号:
2148602 - 财政年份:2022
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: Tracing the physics of submesoscale entrainment and subduction
合作研究:追踪亚尺度夹带和俯冲的物理过程
- 批准号:
2148945 - 财政年份:2022
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant
Collaborative Research: Tracing the Missing Physics of Submesoscale Entrainment and Subduction
合作研究:追踪亚尺度夹带和俯冲缺失的物理现象
- 批准号:
2149041 - 财政年份:2022
- 资助金额:
$ 24.79万 - 项目类别:
Standard Grant