Collaborative Research: High-Performance Biocatalytic Membranes with Self-Contained Radical Polymer Mediators for Water Reclamation and Reuse

合作研究:具有独立自由基聚合物介体的高性能生物催化膜,用于水回收和再利用

基本信息

  • 批准号:
    1924714
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Access to clean water is among the greatest engineering challenges of the 21st century. Efficient use of existing freshwater resources is a primary strategy to address this challenge. However, current societal needs cannot be met without additional water from sources like brackish water and wastewater. Successful reclamation and reuse of these water sources depends on the development of technologies to ensure these waters are fit for use. This project addresses this need using natural enzymes to degrade toxic contaminants present in water. These highly-efficient biological catalysts will be formulated into biocatalytic membranes using recent advances in the fields of polymer chemistry and additive manufacturing. Biocatalytic inks that contain enzymes and other tailor-made functional components will be deposited onto nanoporous membrane supports in a modular fashion. The modular design can be customized for specific needs by changing the target enzymes and/or polymer mediators. Successful development of this technology will help address the critical challenges of the Nation to ensure the supply of safe, clean, and sustainable water resources. Broader impacts for society will result from this project by training the next generation of interdisciplinary scientists and engineers to address the challenge of supplying water to the Nation.Although efficient use of existing freshwater resources is a primary strategy to supply the Nation's water in the face of increasing demand, current societal needs cannot be met without additional water from sources like brackish water and wastewater. Successful reclamation and reuse of these water sources depends on the development of technologies to ensure these waters are fit for use. Enzyme biocatalysis is a promising platform to address this need. Such platforms require small molecular weight redox-active mediators to facilitate the enzymatic degradation of recalcitrant micropollutants. Although these small molecules provide clear benefits, they are costly and can leach from processes necessitating frequent replenishment. Therefore, it is critical to eliminate mediator washout to make this water treatment technology feasible. The overall goal of this project is to generate the scientific knowledge that enables the design and fabrication of high-performance biocatalytic membranes. This will be done by identifying control factors in the design of radical polymer-based macromolecular mediators and elucidating the processing-structure-property relationships that govern their co-deposition with enzymes on nanoporous supports. The specific research tasks to achieve this goal are to: 1) identify macromolecular mediator designs that promote the efficient degradation of micropollutants while preventing mediator washout; 2) elucidate the processing-structure-property relationships for biocatalytic membranes to correlate membrane support architecture with the biocatalytic and transport properties; and 3) evaluate biocatalytic membrane performance over the course of multiple recover and reuse cycles to inform membrane design for field-relevant applications. Successful completion of this research will address gaps in our knowledge on biocatalytic membrane design and manufacture. This knowledge will have broad impact in the fields of additive manufacturing as well as water treatment. The Nation will further benefit by the training of interdisciplinary scientists and engineers with the expertise necessary to advance the water technology landscape of the United States.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
获得清洁的水是21世纪最大的工程挑战之一。有效利用现有淡水资源是应对这一挑战的主要战略。然而,如果没有来自微咸水和废水等来源的额外水,就不能满足当前的社会需求。这些水源的成功回收和再利用有赖于技术的发展,以确保这些水适合使用。该项目解决了这一需求,使用天然酶来降解水中存在的有毒污染物。利用聚合物化学和添加剂制造领域的最新进展,这些高效的生物催化剂将被配制成生物催化膜。含有酶和其他量身定做的功能成分的生物催化墨水将以模块化方式沉积在纳米多孔膜支撑物上。模块化设计可以通过改变目标酶和/或聚合物介体来定制以满足特定需求。这项技术的成功开发将有助于解决国家在确保安全、清洁和可持续的水资源供应方面的关键挑战。该项目将通过培训下一代跨学科科学家和工程师来应对向国家供水的挑战,从而对社会产生更广泛的影响。尽管有效利用现有淡水资源是在需求不断增长的情况下供应国家水的主要战略,但如果没有咸水和废水等来源的额外水资源,当前的社会需求就无法得到满足。这些水源的成功回收和再利用有赖于技术的发展,以确保这些水适合使用。酶生物催化是解决这一需求的一个很有前途的平台。这类平台需要小分子量氧化还原活性介体,以促进顽固性微污染物的酶降解。尽管这些小分子提供了明显的好处,但它们的成本很高,而且可能会从需要频繁补充的过程中渗出。因此,要使这项水处理技术可行,关键是要消除介体冲刷。该项目的总体目标是产生科学知识,使高性能生物催化膜的设计和制造成为可能。这将通过确定基于自由基聚合物的大分子介体设计中的控制因素,并阐明支配它们与纳米孔载体上的酶共沉积的过程-结构-性质关系来实现。实现这一目标的具体研究任务是:1)确定在防止介质流失的同时促进微污染物有效降解的大分子介质设计;2)阐明生物催化膜的加工-结构-性能关系,以将膜支撑结构与生物催化和传输特性相关联;以及3)评估生物催化膜在多个回收和再利用循环过程中的性能,为现场相关应用的膜设计提供信息。这项研究的成功完成将填补我们在生物催化膜设计和制造方面的知识空白。这些知识将在添加剂制造和水处理领域产生广泛影响。国家将进一步受益于对跨学科科学家和工程师的培训,他们拥有推进美国水技术格局所需的专业知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Corti其他文献

David Corti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Corti', 18)}}的其他基金

Effects of Dispersant Molecular Structure on the Stabilization of Dispersions Against Agglomeration and Sedimentation
分散剂分子结构对分散体稳定性的影响,防止团聚和沉降
  • 批准号:
    1706305
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Critical Cavities and Homogeneous Bubble Nucleation in Superheated Liquids
过热液体中的临界空腔和均质气泡成核
  • 批准号:
    0718145
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Entropic Control of Colloidal Stability, Phase Transition, and Particle Deposition: Theory of Depletion Forces
职业:胶体稳定性、相变和粒子沉积的熵控制:耗尽力理论
  • 批准号:
    0133780
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403399
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了