CC* Compute: Accelerating Computational Research for Engineering and Science (ACRES) at Clarkson University, A Campus Cluster Proposal

CC* 计算:加速克拉克森大学工程与科学计算研究 (ACRES),校园集群提案

基本信息

  • 批准号:
    1925596
  • 负责人:
  • 金额:
    $ 39.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Clarkson University is building a computational cluster (ACRES: Accelerating Computation Research for Engineering and Science) to support data and computationally intensive projects aligned with Clarkson's four interdisciplinary research themes: Data Analytics, Healthy World Solutions, Advanced Materials Development, and Next Generation Healthcare. ACRES facilitates the conduct of high-impact, collaborative research that requires access to high-performance computing (HPC) resources, enables research currently not practical/feasible, and also supports student-learning opportunities through credit-bearing courses, undergraduate research, and an existing NSF REU site focusing on HPC. As a campus resource, ACRES is made available to any faculty member or student at the University according to queueing policies implemented to ensure fair-access. And, ACRES supports Clarkson's increased focus on computational research and a cluster hire of computationally active faculty. The ACRES compute cluster replaces an existing, five-year-old high-performance compute cluster whose computational capacity provided 1.05M core-h/yr. Research need for computational capacity has grown to an identified total of 8.5M core-h/yr. ACRES is sized to meet current demands and modest near-term growth with unused computational capacity being shared via the Open Science Grid (OSG) to benefit the broader scientific community. This new computational resource provides 9.8M core-h/year through 1120 cores, high-speed Infiniband interconnect, four NVIDIA Tesla V100 GPUs, and 40 TB of scratch storage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
克拉克森大学正在建立一个计算集群(ACRES:加速工程和科学的计算研究),以支持与克拉克森的四个跨学科研究主题相一致的数据和计算密集型项目:数据分析,健康世界解决方案,先进材料开发和下一代医疗保健。ACRES促进了高影响力的合作研究,需要访问高性能计算(HPC)资源,使研究目前不切实际/可行,并通过学分课程,本科生研究和现有的NSF REU网站专注于HPC支持学生学习的机会。作为校园资源,ACRES是提供给任何教师或学生在大学根据实施,以确保公平访问的招生政策。而且,ACRES支持克拉克森对计算研究的日益关注和对计算活跃教师的集群雇用。ACRES计算集群取代了已有五年历史的高性能计算集群,其计算能力为105万核心小时/年。计算能力的研究需求已经增长到确定的850万核心小时/年。ACRES的规模可以满足当前的需求和适度的近期增长,未使用的计算能力通过开放科学网格(OSG)共享,以使更广泛的科学界受益。这项新的计算资源通过1120个内核、高速Infiniband互连、4个NVIDIA Tesla V100 GPU和40 TB暂存存储,提供980万核时/年的计算能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力评审标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correlation between complexity and mechanical recovery of metallic nanoarchitecture structures
金属纳米结构的复杂性与机械恢复之间的相关性
  • DOI:
    10.1557/s43579-021-00065-5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Ke, H.;Ma, J.;Mastorakos, I.
  • 通讯作者:
    Mastorakos, I.
Spectral attenuation of ocean waves in pack ice and its application in calibrating viscoelastic wave-in-ice models
  • DOI:
    10.5194/tc-14-2053-2020
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sukun Cheng;J. Stopa;F. Ardhuin;H. Shen
  • 通讯作者:
    Sukun Cheng;J. Stopa;F. Ardhuin;H. Shen
Comparison of ice and wind-wave modules in WAVEWATCH III® in the Barents Sea
巴伦支海 WAVEWATCH III® 中的冰和风波模块比较
  • DOI:
    10.1016/j.coldregions.2020.103008
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Liu, Dongang;Tsarau, Andrei;Guan, Changlong;Shen, Hayley H.
  • 通讯作者:
    Shen, Hayley H.
Computational modeling of fiber transport in human respiratory airways—A review
Improved Discrete Random Walk Stochastic Model for Simulating Particle Dispersion and Deposition in Inhomogeneous Turbulent Flows
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Fiske其他文献

Degree of bother caused by nocturia in women
女性夜尿造成的困扰程度
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Joshua Fiske;H. Scarpero;X. Xue;V. Nitti
  • 通讯作者:
    V. Nitti
Tamsulosin reduces the incidence of acute urinary retention following early removal of the urinary catheter after radical retropubic prostatectomy.
坦索罗辛可降低根治性耻骨后前列腺切除术后早期拔除导尿管后急性尿潴留的发生率。
  • DOI:
    10.1016/s0090-4295(03)00333-9
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Rupa Patel;Joshua Fiske;H. Lepor
  • 通讯作者:
    H. Lepor

Joshua Fiske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CC* Compute: Accelerating Compute Driven Science Through a Sharable High Performance Computing Cluster in Kent State Multi-Campus System
CC* 计算:通过肯特州立多校区系统中的可共享高性能计算集群加速计算驱动的科学
  • 批准号:
    2201558
  • 财政年份:
    2022
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Standard Grant
Accelerating Next-Generation Applications Via Secure and Reliable Compute-in-Memory Systems
通过安全可靠的内存计算系统加速下一代应用程序
  • 批准号:
    RGPIN-2021-03729
  • 财政年份:
    2022
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerating Next-Generation Applications Via Secure and Reliable Compute-in-Memory Systems
通过安全可靠的内存计算系统加速下一代应用程序
  • 批准号:
    DGECR-2021-00417
  • 财政年份:
    2021
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Discovery Launch Supplement
Accelerating Next-Generation Applications Via Secure and Reliable Compute-in-Memory Systems
通过安全可靠的内存计算系统加速下一代应用程序
  • 批准号:
    RGPIN-2021-03729
  • 财政年份:
    2021
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Discovery Grants Program - Individual
CC* Compute: Accelerating Advances in Science and Engineering at The University of Alabama Through HPC Infrastructure
CC* 计算:通过 HPC 基础设施加速阿拉巴马大学科学与工程的进步
  • 批准号:
    2018846
  • 财政年份:
    2020
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Standard Grant
CC* Compute: High-Performance Computing Backbone for Accelerating Campus-Wide and Regional Research
CC* 计算:用于加速校园范围和区域研究的高性能计算骨干
  • 批准号:
    2018933
  • 财政年份:
    2020
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Standard Grant
CC* Compute: Accelerating Science and Education by Campus and Grid Computing
CC* 计算:通过校园和网格计算加速科学和教育
  • 批准号:
    2019089
  • 财政年份:
    2020
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Standard Grant
CC* Compute: Deep Bayou: Accelerating Scientific Discoveries with A GPU Cluster
CC* 计算:Deep Bayou:利用 GPU 集群加速科学发现
  • 批准号:
    2020446
  • 财政年份:
    2020
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Standard Grant
CC* Compute: CAML - Accelerating Machine Learning via Campus and Grid
CC* 计算:CAML - 通过校园和网格加速机器学习
  • 批准号:
    1925645
  • 财政年份:
    2019
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Standard Grant
CAREER: In-Situ Compute Memories for Accelerating Data Parallel Applications
职业:用于加速数据并行应用的原位计算存储器
  • 批准号:
    1652294
  • 财政年份:
    2017
  • 资助金额:
    $ 39.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了