CC* Compute: CAML - Accelerating Machine Learning via Campus and Grid
CC* 计算:CAML - 通过校园和网格加速机器学习
基本信息
- 批准号:1925645
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning, a subset of the field of artificial intelligence, has enabled impressive progress on a range of problems from identifying objects in images to translating French into English. At the University of Notre Dame, the Cyberinfrastructure to Accelerate Machine Learning (CAML) resource allows faculty across the university to leverage machine learning to address problems within their disciplines. CAML uses graphical processing units (GPUs) to provide a significant boost in the speed of training machine learning algorithms, enabling researching to solve problems faster and to train more complex models capable of addressing more difficult problems. CAML benefits a wide range of research activities, from searching for new particles at the Large Hadron Collider to exploring new chemicals leading to medical breakthroughs. CAML also benefits the broader community as part of the Open Science Grid, serving researchers from universities and labs across the US. Furthermore, CAML is used for education and outreach involving students ranging from high school to graduate school, helping to train the next generation to tackle data science challenges in the public and private sector.CAML provides GPU resources for accelerating machine learning to the research community both locally at the University of Notre Dame and nationally through the Open Science Grid (OSG). CAML physically hosts GPU resources suitable for accelerating the training of models from standard Deep Learning libraries, but also enables on-demand cloud access to more experimental architectures like FPGA resources. Configured for both interactive and batch access, CAML supports both small-scale explorations to large-scale discovery science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习是人工智能领域的一个子集,它在一系列问题上取得了令人印象深刻的进展,从识别图像中的物体到将法语翻译成英语。在圣母大学,加速机器学习的网络基础设施(CAML)资源允许整个大学的教师利用机器学习来解决他们学科内的问题。CAML使用图形处理单元(gpu)来显著提高训练机器学习算法的速度,使研究能够更快地解决问题,并训练能够解决更困难问题的更复杂模型。CAML受益于广泛的研究活动,从在大型强子对撞机上寻找新粒子到探索导致医学突破的新化学物质。作为开放科学网格的一部分,CAML还使更广泛的社区受益,为来自美国各地大学和实验室的研究人员提供服务。此外,CAML还用于从高中到研究生院的学生的教育和推广,帮助培养下一代应对公共和私营部门的数据科学挑战。CAML通过开放科学网格(OSG)为圣母大学本地和全国的研究界提供加速机器学习的GPU资源。CAML物理托管适合加速标准深度学习库模型训练的GPU资源,但也允许按需云访问更多实验性架构,如FPGA资源。配置为交互式和批处理访问,CAML既支持小规模探索,也支持大规模科学发现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variable selection with false discovery rate control in deep neural networks
- DOI:10.1038/s42256-021-00308-z
- 发表时间:2019-09
- 期刊:
- 影响因子:23.8
- 作者:Zixuan Song;Jun Li
- 通讯作者:Zixuan Song;Jun Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Lannon其他文献
Kevin Lannon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Lannon', 18)}}的其他基金
CAREER: Understanding Particle Masses through Studying Higgs Produced in Association with Top Quarks at CMS
职业:通过研究 CMS 中与顶夸克相关产生的希格斯粒子来了解粒子质量
- 批准号:
0955765 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Redesigning the Memory System in the Era of Compute Express Link
SHF:小型:重新设计 Compute Express Link 时代的内存系统
- 批准号:
2333049 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CC* Campus Compute: Building a Computational Cluster for Scientific Discovery
CC* 校园计算:构建科学发现计算集群
- 批准号:
2346673 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CC* Campus Compute: Interdisciplinary GPU-Enabled Compute
CC* 校园计算:支持 GPU 的跨学科计算
- 批准号:
2346343 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MYRTUS: Multi-layer 360° dYnamic orchestrion and interopeRable design environmenT for compute-continUum Systems
MYRTUS:用于连续计算系统的多层 360° 动态编排和可互操作设计环境
- 批准号:
10087666 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Equipment: CC* Campus Compute: A High-Performance Computing System for Research and Education in Arkansas
设备:CC* 校园计算:用于阿肯色州研究和教育的高性能计算系统
- 批准号:
2346752 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Research Infrastructure: CC* Campus Compute: Lawrence 2.0: Advancing Multi-Disciplinary Research and Education in South Dakota
研究基础设施:CC* 校园计算:Lawrence 2.0:推进南达科他州的多学科研究和教育
- 批准号:
2346643 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




