GOALI/Collaborative Research: Strain Gadient Plasticity Modeling to Link Microstructural Non-Local Effects of Dislocation/Interface Interactions with Ductility and Springback
GOALI/合作研究:应变梯度塑性建模将位错/界面相互作用的微观结构非局部效应与延展性和回弹联系起来
基本信息
- 批准号:1926662
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A key component in the strategy to lightweight vehicles for reducing harmful emissions involves the introduction of advanced light alloys across a wide spectrum of vehicle components. However, advanced alloys are typically less ductile than their heavier predecessors and are liable to fracture during the shaping and forming operations. On the other hand, various empirical observations have demonstrated that careful selection of strain (deformation) path during the forming process can significantly delay component failure. Current simulation frameworks do not account for key phenomena at the microstructural level needed to analyze and design better forming processes and to guide alloy selection and development for optimal exploitation of current and forthcoming lightweight materials. By combining novel developments in microscopy and modeling, the critical issue to be explored in this Grant Opportunities for Academic Liaison with Industry (GOALI) research project involves interactions between mobile planes of atoms (dislocations) that facilitate shape change of the component, and microstructural interfaces, such as precipitates and grain boundaries. Barriers to dislocation glide cause atomic pileups, and related backstress effects, that are not considered in traditional models, but can potentially be manipulated to improve overall ductility via careful design of strain paths that occur during forming. The research will be integrated into industrial practice by the industrial partner, Aleris, to deliver potentially transformational capabilities in vehicle lightweighting efforts. As a result of this collaboration, the students involved will also gain an understanding of industrial challenges and drivers. Knowledge derived from the research will be integrated into course curricula for graduate and undergraduate students, while a cloud-based App hosting the developed model will be made available to the broader research community via Materials Resources, LLC. This interdisciplinary project, involving the complementary expertise of two universities and an industrial partner, is driven by the hypothesis that accurate calculation of strain gradients, and related backstress and localization fields, during forming can be used to design strain paths that optimize material ductility, effectively delaying localization/failure in high-strength aluminum (Al) alloy sheets. The team will conceive and implement a novel strain-gradient crystal plasticity finite element model to encapsulate the scientific insights. The model will be guided by a combination of two cutting-edge microstructural techniques that will provide unprecedented detail of the deformation behavior at the relevant length-scale. High-resolution electron backscatter diffraction (HREBSD) will be employed for mapping both geometrically necessary dislocations, accompanying strain gradients, and related backstress for each strain path, while high-resolution digital image correlation (HRDIC) will extract the plastic strain tensor for a complete picture of the deformation. The scientific advances will be applied to warm forming of two high strength alloys with different microstructures, namely AA6022-T4 and AA7050-T6.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在减少有害排放的轻量化车辆战略中,一个关键组成部分是在各种车辆部件中引入先进的轻合金。然而,高级合金的延展性通常低于其较重的前辈,并且在成形和成形操作中容易断裂。另一方面,各种经验观察表明,在成形过程中仔细选择应变(变形)路径可以显著延迟构件的破坏。目前的模拟框架没有考虑到微观结构一级的关键现象,这些现象需要分析和设计更好的成形工艺,并指导合金的选择和开发,以优化利用现有和即将到来的轻质材料。通过结合显微镜和建模方面的新发展,这项授予与工业学术联系机会(GOALI)研究项目要探索的关键问题涉及促进成分形状变化的原子移动平面(位错)之间的相互作用,以及微观结构界面,如沉淀物和晶界。位错滑移势垒会导致原子堆积和相关的背应力效应,这在传统模型中没有考虑到,但可以通过仔细设计成形过程中发生的应变路径来潜在地提高整体延展性。工业合作伙伴Aleris将把这项研究整合到工业实践中,以在车辆轻量化努力中提供潜在的转型能力。作为这种合作的结果,参与其中的学生还将了解行业挑战和驱动因素。从研究中获得的知识将被整合到研究生和本科生的课程中,而托管所开发模型的基于云的应用程序将通过材料资源有限责任公司向更广泛的研究社区提供。这个跨学科的项目涉及两所大学和一个工业合作伙伴的互补专业知识,其驱动假设是在成形过程中准确计算应变梯度以及相关的背应力和局部化领域,可以用于设计应变路径,以优化材料的延展性,有效地延缓高强铝合金板材的局部化/破坏。该团队将构思和实施一种新的应变梯度晶体塑性有限元模型来封装科学见解。该模型将由两种尖端微结构技术的组合指导,将在相关的长度尺度上提供前所未有的变形行为细节。高分辨率电子背散射衍射(HREBSD)将被用于绘制每个应变路径的几何必要的位错、伴随的应变梯度和相关的背应力,而高分辨率数字图像相关(HRDIC)将提取塑性应变张量以获得完整的变形图像。这些科学进展将应用于两种不同微观结构的高强度合金的温成型,即AA6022-T4和AA7050-T6。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase determination in dual phase steels via HREBSD‐based tetragonality mapping
通过基于 HREBSD 的四方映射确定双相钢的相
- DOI:10.1111/jmi.12980
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Adams, Derrik;Miles, Michael P.;Homer, Eric R.;Brown, Tyson;Mishra, Raj K.;Fullwood, David T.
- 通讯作者:Fullwood, David T.
Effect of pre-strain on springback behavior after bending in AA 6016-T4: Experiments and crystal plasticity modeling
- DOI:10.1016/j.ijsolstr.2023.112485
- 发表时间:2023-11
- 期刊:
- 影响因子:3.6
- 作者:Dane Sargeant;Zahidul Sarkar;Rishabh Sharma;Marko Knezevic;D. Fullwood;Michael P. Miles
- 通讯作者:Dane Sargeant;Zahidul Sarkar;Rishabh Sharma;Marko Knezevic;D. Fullwood;Michael P. Miles
Modeling of Springback Behavior in AA6016-T4 Sheet via an Elastoplastic Self-consistent Model Incorporating Backstress
通过包含背应力的弹塑性自洽模型对 AA6016-T4 板材的回弹行为进行建模
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dane Sargeant, Md. Zahidul
- 通讯作者:Dane Sargeant, Md. Zahidul
Micromechanical origins of remarkable elongation-to-fracture in AHSS TRIP steels via continuous bending under tension
- DOI:10.1016/j.msea.2021.141876
- 发表时间:2021-09
- 期刊:
- 影响因子:6.4
- 作者:Rishabh Sharma;C. Poulin;M. Knezevic;M. Miles;D. Fullwood
- 通讯作者:Rishabh Sharma;C. Poulin;M. Knezevic;M. Miles;D. Fullwood
Experimental characterization and crystal plasticity modeling for predicting load reversals in AA6016-T4 and AA7021-T79
用于预测 AA6016-T4 和 AA7021-T79 中负载反转的实验表征和晶体塑性建模
- DOI:10.1016/j.ijplas.2022.103292
- 发表时间:2022
- 期刊:
- 影响因子:9.8
- 作者:Daroju, Sowmya;Kuwabara, Toshihiko;Sharma, Rishabh;Fullwood, David T.;Miles, Michael P.;Knezevic, Marko
- 通讯作者:Knezevic, Marko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Miles其他文献
Interpretation of the stress dip test as a means of characterizing backstress: Experiments and backstress-aided crystal plasticity modeling of polycrystalline tantalum
应力骤降试验作为表征背应力的一种手段的解释:多晶钽的实验和背应力辅助晶体塑性建模
- DOI:
10.1016/j.ijplas.2024.104089 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:12.800
- 作者:
Sajjad Izadpanah Najmabad;David Fullwood;Tristan Russell;Marko Knezevic;Michael Miles - 通讯作者:
Michael Miles
Tu1570 - Reduced Coenzyme Q10 Levels are Associated with Advanced Fibrosis in Adults with Nonalcoholic Steatohepatitis
- DOI:
10.1016/s0016-5085(17)34004-0 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Sarah Kemme;Michael Miles;Rohit Loomba;Stavra Xanthakos;Rohit Kohli - 通讯作者:
Rohit Kohli
Flattening of Diluted Species Profile via Passive Geometry in a Microfluidic Device
通过微流体装置中的被动几何形状平坦化稀释物质轮廓
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Michael Miles;Biddut Bhattacharjee;N. Sridhar;A. K. Fajrial;Kerri A. Ball;Yung;M. H. Stowell;W. Old;X. Ding - 通讯作者:
X. Ding
Friction stir spot welded joints of 409L stainless steels fabricated by a convex shoulder tool
- DOI:
10.1007/s12540-013-6017-8 - 发表时间:
2013-09-30 - 期刊:
- 影响因子:4.000
- 作者:
Md. Abu Mowazzem Hossain;Md. Tariqul Hasan;Sung-Tae Hong;Michael Miles;Hoon-Hwe Cho;Heung Nam Han - 通讯作者:
Heung Nam Han
Numerical Simulation of the Friction Stir Welding Process Using both Lagrangian and Arbitrary Lagrangian Eulerian Formulations
使用拉格朗日和任意拉格朗日欧拉公式对搅拌摩擦焊过程进行数值模拟
- DOI:
10.1063/1.1766702 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
S. Guerdoux;L. Fourment;Michael Miles;Carl Sorensen - 通讯作者:
Carl Sorensen
Michael Miles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Miles', 18)}}的其他基金
GOALI: Crack Repair of Irradiated Stainless Steel by Friction Stir Processing
GOALI:通过搅拌摩擦加工修复辐照不锈钢裂纹
- 批准号:
1405508 - 财政年份:2014
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
High Speed Friction Stir Spot Welding: A New Approach to Spot Joining of Ultra High Strength Steel
高速搅拌摩擦点焊:超高强度钢点焊的新方法
- 批准号:
1131203 - 财政年份:2011
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SGER: Friction Bit Joining - A New Solid State Spot Joining Process
SGER:摩擦钻头连接 - 一种新的固态点连接工艺
- 批准号:
0834729 - 财政年份:2008
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147126 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
- 批准号:
2126461 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
- 批准号:
2032261 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
- 批准号:
2050691 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant














{{item.name}}会员




