RII Track 4: Non-Reciprocal Spin-Wave Engineering in Chiral Magnets
RII 轨道 4:手性磁体中的非互易自旋波工程
基本信息
- 批准号:1929086
- 负责人:
- 金额:$ 21.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Waves are in many parts of our lives, from communication to computation, and are a subject of intense research. In particular, micro and millimeter waves have been paid great attention for next-generation technologies, e.g., 5G/millimeter-wave wireless network, due to the ever-increasing demand in mobile data by the explosion of mobile users and IoT. However, the fabrication of reconfigurable high-frequency devices and components has been a challenge due to the lack of appropriate materials. Recent developments in chiral and magnetic meta-materials that facilitate asymmetric spin-wave propagation are promising for creating microwave circulators and diodes based on spin waves. These spin waves are highly configurable because the magnetic interactions in chiral magnets and asymmetric magnetic multilayers can be tailored, and these materials are highly sensitive to external magnetic fields and laser pulses for further manipulation. The demonstration of such configurable, power-efficient, and versatile microwave components will pave the way towards new high-frequency communication devices, which can be used in various applications, including entertainment, security, and remote patient treatment.The joined effort between Oklahoma State University and Nanoscale Spin Dynamics group at NIST, Boulder, will accelerate materials discovery and device characterization for superior and reconfigurable microwave components that can operate from a few GHz up to THz frequencies. The proposed research will advance the fundamental understanding of non-reciprocal spin-wave propagation in chiral magnetic materials, which is caused by asymmetric exchange interaction in them due to the broken inversion symmetry. These spin-waves are non-trivial compared to light or other waves, but they can be highly tractable by tailoring magnetic interactions, applying external electric and magnetic fields, or exciting with ultrashort pulses. Control of magnetic interactions will be achieved by engineering interfaces of magnetic material and adjacent metal layers to minimize magnon scattering but maintain high non-reciprocity. Numerical micromagnetic simulations will be used to optimize device performance and to better understand spin-wave propagation in complex heterostructures. For this purpose, the team will (i) grow and synthesize low-damping chiral magnetic materials and thin films, (ii) precisely characterize their structural and magnetic properties, and (iii) fabricate micro and nanoscale devices for the development of device concepts. Broadband ferromagnetic resonance spectroscopy, magnetometry, Brillouin light scattering spectroscopy, magnetotransport, and heterodyne magneto-optical microwave microscopy are the techniques to be employed in this investigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
波存在于我们生活的许多方面,从通信到计算,并且是一个深入研究的主题。特别地,对于下一代技术,例如,5G/毫米波无线网络,由于移动的用户和物联网的爆炸式增长对移动的数据的需求不断增加。然而,由于缺乏合适的材料,可重构高频器件和组件的制造一直是一个挑战。手性和磁性超材料的最新发展,促进非对称自旋波传播是有希望的,用于创建基于自旋波的微波环行器和二极管。这些自旋波是高度可配置的,因为手性磁体和非对称磁性多层膜中的磁相互作用可以定制,并且这些材料对外部磁场和激光脉冲高度敏感,以便进一步操纵。 这种可配置、高能效和多功能微波组件的演示将为新型高频通信设备铺平道路,这些设备可用于各种应用,包括娱乐、安全和远程患者治疗。俄克拉荷马州州立大学和NIST的纳米尺度自旋动力学小组的共同努力,将加速材料发现和器件表征,用于上级和可重新配置的微波组件,可以从几GHz到THz频率工作。该研究将有助于进一步了解手性磁性材料中自旋波的非互易传播,这是由于反转对称性破缺导致的非对称交换作用引起的。与光波或其他波相比,这些自旋波是不平凡的,但它们可以通过定制磁相互作用,施加外部电场和磁场,或用超短脉冲激发来高度处理。磁相互作用的控制将通过设计磁性材料和相邻金属层的界面来实现,以最大限度地减少磁振子散射,但保持高的非互易性。数值微磁模拟将用于优化器件性能,并更好地了解复杂异质结构中的自旋波传播。为此,该团队将(i)生长和合成低阻尼手性磁性材料和薄膜,(ii)精确表征其结构和磁性,以及(iii)制造微纳米器件以开发器件概念。宽带铁磁共振光谱,磁力测量,布里渊光散射光谱,磁输运,和外差磁光微波显微镜的技术将在本investigation.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A low-cost vibrating sample magnetometry based on audio components
- DOI:10.1016/j.jmmm.2020.166560
- 发表时间:2020-05
- 期刊:
- 影响因子:2.7
- 作者:B. R. Sankhi;E. Turgut
- 通讯作者:B. R. Sankhi;E. Turgut
A Do-It-Yourself (DIY) Light Wave Sensing and Communication Project: Low-Cost, Portable, Effective, and Fun
- DOI:10.1109/te.2020.3029543
- 发表时间:2021-08-01
- 期刊:
- 影响因子:2.6
- 作者:Ekin, Sabit;O'Hara, John F.;Young, Jeffrey L.
- 通讯作者:Young, Jeffrey L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emrah Turgut其他文献
Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit
用于对超出衍射极限的磁织构进行成像的洛伦兹电子叠层成像技术
- DOI:
10.1038/s41565-022-01224-y - 发表时间:
2022-10-31 - 期刊:
- 影响因子:34.900
- 作者:
Zhen Chen;Emrah Turgut;Yi Jiang;Kayla X. Nguyen;Matthew J. Stolt;Song Jin;Daniel C. Ralph;Gregory D. Fuchs;David A. Muller - 通讯作者:
David A. Muller
Emrah Turgut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
- 批准号:
2327374 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Analog quantum simulation of non-Markovian dynamics of multi-qubit systems
ExpandQISE:轨道 1:多量子位系统非马尔可夫动力学的模拟量子模拟
- 批准号:
2328948 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track G: Proactive End-to-End Zero Trust-Based Security Intelligence for Resilient Non-cooperative 5G Networks
NSF 融合加速器轨道 G:针对弹性非合作 5G 网络的主动式端到端基于零信任的安全情报
- 批准号:
2226232 - 财政年份:2022
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
Development of non-enzymatic biosensors using track-etched membrane electrodes
使用径迹蚀刻膜电极开发非酶生物传感器
- 批准号:
22K05172 - 财政年份:2022
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track G: Autonomously Tunable Waveform-Agnostic Radio Adapter for Seamless and Secure Operation of DoD Devices Through Non-Cooperative 5G Networks
NSF 融合加速器轨道 G:自主可调波形无关无线电适配器,可通过非合作 5G 网络无缝、安全地操作国防部设备
- 批准号:
2226392 - 财政年份:2022
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
CIVIC-PG Track B: Equalizing Access to Non-opioid Strategies with Community-embedded Online Pain Management Tools
CIVIC-PG 轨道 B:通过社区嵌入的在线疼痛管理工具平等获得非阿片类药物策略
- 批准号:
2228582 - 财政年份:2022
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track G: Secure Texting over Non-cooperative Networks and Anti-jamming Enhancement in 5G
NSF 融合加速器轨道 G:非合作网络上的安全短信和 5G 抗干扰增强
- 批准号:
2226423 - 财政年份:2022
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
Long non-coding RNA signatures to track treatment responses in multiple sclerosis
长非编码 RNA 特征用于追踪多发性硬化症的治疗反应
- 批准号:
10088013 - 财政年份:2020
- 资助金额:
$ 21.06万 - 项目类别:
Collaborative Research: Scaling Support for Non-tenure Track STEM Faculty through Learning Communities and Design Teams
合作研究:通过学习社区和设计团队扩大对非终身教授 STEM 教师的支持
- 批准号:
1914784 - 财政年份:2019
- 资助金额:
$ 21.06万 - 项目类别:
Continuing Grant
Collaborative Research: Scaling Support for Non-tenure Track STEM Faculty through Learning Communities and Design Teams
合作研究:通过学习社区和设计团队扩大对非终身教授 STEM 教师的支持
- 批准号:
1914802 - 财政年份:2019
- 资助金额:
$ 21.06万 - 项目类别:
Continuing Grant