Collaborative Research: Wind Tunnel Modeling of Higher-Order Turbulence and its Effects on Structural Loads and Response
合作研究:高阶湍流的风洞建模及其对结构载荷和响应的影响
基本信息
- 批准号:1930389
- 负责人:
- 金额:$ 31.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wind hazards are among the most destructive and costly natural forces confronting civil infrastructure. To mitigate risk and business interruptions, reduce damage, and save lives it is essential that we understand the basic nature of wind forces. One important tool for assessing wind loads on structures is the Boundary Layer Wind Tunnel (BLWT), which simulates the effects of high intensity wind field on scaled structures in a controlled environment. The University of Florida Boundary Layer Wind Tunnel (UF-BLWT) is a shared-use facility supported by the National Science Foundation (NSF) Natural Hazards Engineering Research Infrastructure (NHERI) program. The UF-BLWT is a state-of-the-art facility capable of rapidly modifying wind behavior in an automated fashion to investigate the effects of terrain on wind fields and resulting forces on structures. This study will conduct a set of novel experiments at the UF-BLWT to understand the influence of terrain variations on peak wind pressures that load structures during storms. The experimental outcomes will provide a precise description of how a building?s surroundings affect wind pressures and enabling engineers to cost effectively design to survive extreme winds. The novel experiments proposed herein will be further leveraged to support unique educational initiatives including a student exchange program between University of Florida and Johns Hopkins University, and a NSF NHERI workshop on advanced cyber-physical, data-driven, and active learning experimental designs applied to BLWT modeling. A trove of data generated through this study will be curated and published for public access, and will serve as a resource for the wind engineering and machine learning communities as well as an educational resource for teaching wind engineering courses. The project will also support the PIs to continue individual outreach activities at their home institutions that include afterschool programs and internships for underprivileged youth.The Boundary Layer Wind Tunnel (BLWT) is a commonly used tool for assessing wind loads on structures. Existing BLWT facilities routinely match first- and second-order wind field models that have been validated with full-scale wind measurements. However, a growing body of evidence suggests that winds in the roughness sublayer and the inertial sublayer exhibit non-Gaussian higher-order properties in both full-scale wind measurements and BLWT wind fields. These non-Gaussian properties can strongly influence peak wind pressures, which govern certain structural limit states and play an important role in design. To date, no systematic study has been conducted to investigate the influence of these higher-order features in a BLWT, let alone understand their connection to the BLWT roughness elements in an effort to control the higher-order properties of mechanically induced turbulence. We propose a BLWT effort derived from two fundamental hypotheses: 1. Second-order equivalent wind fields can possess different higher-order properties and these properties can be linked to surface roughness features; 2. Differences in higher-order properties of the wind field can significantly influence peak pressures and consequently the response of structures. These hypotheses will be tested through a sequence of four tasks that will systematically modify the automated roughness element array (terraformer) unique to the University of Florida BLWT to identify roughness arrays that create second-order equivalent, but higher-order divergent wind fields. Machine learning methods will be employed to identify relationships between roughness element configurations and higher-order statistical properties of the wind field. The effect of these higher-order wind fields on structures will be studied by investigating peak pressures on two low-rise bluff bodies and measuring the dynamic response of a single degree of freedom flexible structure with tunable nonlinear response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风灾害是民用基础设施面临的最具破坏性和代价最高的自然力量之一。为了降低风险和业务中断,减少损失并挽救生命,我们必须了解风力的基本性质。边界层风洞(BLWT)是评估结构风荷载的一个重要工具,它模拟了受控环境中高强度风场对缩尺结构的影响。佛罗里达大学边界层风洞(UF-BLWT)是由美国国家科学基金会(NSF)自然灾害工程研究基础设施(NHERI)计划支持的共享使用设施。UF-BLWT是一种最先进的设施,能够以自动化的方式快速修改风行为,以研究地形对风场的影响以及对结构的作用力。这项研究将在UF-BLWT进行一系列新颖的实验,以了解地形变化对风暴期间加载结构的峰值风压的影响。实验结果将提供一个精确的描述如何建设?的环境影响风压,使工程师能够以成本效益的设计,以生存极端的风。本文提出的新实验将进一步利用,以支持独特的教育举措,包括佛罗里达大学和约翰霍普金斯大学之间的学生交流计划,和NSF NHERI研讨会先进的网络物理,数据驱动,和主动学习的实验设计应用于BLWT建模。通过这项研究产生的大量数据将被整理和发布,供公众访问,并将作为风力工程和机器学习社区的资源,以及风力工程课程教学的教育资源。该项目还将支持PI继续在其家乡机构开展个人外展活动,包括为贫困青年提供课后计划和实习机会。边界层风洞(BLWT)是评估结构风荷载的常用工具。现有的BLWT设施通常匹配一阶和二阶风场模型,这些模型已经过全尺寸风测量的验证。然而,越来越多的证据表明,在粗糙子层和惯性子层的风表现出非高斯高阶特性,在全尺度风测量和BLWT风场。这些非高斯特性可以强烈地影响峰值风压,这决定了某些结构的极限状态,并在设计中发挥重要作用。到目前为止,还没有系统的研究已经进行调查的影响,这些高阶功能的BLWT,更不用说了解他们的连接BLWT粗糙度元素,努力控制机械诱导湍流的高阶特性。我们提出了一个BLWT的努力来自两个基本假设:1。二阶等效风场可以具有不同的高阶特性,这些特性可以与表面粗糙度特征相关联; 2.风场高阶特性的差异会显著影响峰值压力,从而影响结构的响应。这些假设将通过一系列四项任务进行测试,这些任务将系统地修改佛罗里达大学BLWT独有的自动粗糙度元素阵列(terraformer),以识别创建二阶等效但更高阶的粗糙度阵列发散风场。机器学习方法将被用来识别粗糙度元素配置和风场的高阶统计特性之间的关系。这些高阶风场对结构的影响将通过调查两个低层钝体上的峰值压力和测量具有可调非线性响应的单自由度柔性结构的动态响应来研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active Learning for Global Sensitivity Analysis
主动学习全局敏感性分析
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mohit Chauhan, Mariel Ojeda-Tuz
- 通讯作者:Mohit Chauhan, Mariel Ojeda-Tuz
Equivalent Turbulence Profiles from Randomized Terrain in a Boundary Layer Wind Tunnel
边界层风洞中随机地形的等效湍流剖面
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mariel Ojeda-Tuz, Mohit Chauhan
- 通讯作者:Mariel Ojeda-Tuz, Mohit Chauhan
Active machine learning driven wind tunnel experiments: Realizing the benefits of automation at the UF-BLWT
主动机器学习驱动的风洞实验:在 UF-BLWT 实现自动化的优势
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Michael D. Shields
- 通讯作者:Michael D. Shields
Active Machine Learning in Large Scale Wind Tunnel Experiments
大规模风洞实验中的主动机器学习
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mohit Chauhan, Mariel Ojeda-Tuz
- 通讯作者:Mohit Chauhan, Mariel Ojeda-Tuz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Shields其他文献
Growth and adrenal suppression in asthmatic children treated with high-dose fluticasone propionate
高剂量丙酸氟替卡松治疗哮喘儿童的生长和肾上腺抑制
- DOI:
10.1016/s0140-6736(96)03339-9 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
G. Todd;K. Dunlop;J. McNaboe;M. Ryan;D. Carson;Michael Shields - 通讯作者:
Michael Shields
Modulating higher-order statistics of turbulent boundary layer wind fields using randomized grid roughness
利用随机网格粗糙度调制湍流边界层风场的高阶统计量
- DOI:
10.1016/j.jweia.2025.106042 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.900
- 作者:
Mariel Ojeda-Tuz;Mohit Chauhan;Pedro Fernández-Cabán;Ryan Catarelli;Michael Shields;Kurtis Gurley - 通讯作者:
Kurtis Gurley
Pulmonary Hemorrhage and Necrotizing Glomerulonephritis Without Glomerular Immune Deposits: Report of Two Cases
- DOI:
10.1016/s0272-6386(12)80887-0 - 发表时间:
1991-08-01 - 期刊:
- 影响因子:
- 作者:
Colin L. Jones;Michael Shields;Allison A. Eddy;Reuben Baumal;Michael O'Neill;Dennis F. Geary - 通讯作者:
Dennis F. Geary
Diagnostic Value of Mid-regional Pro-adrenomedullin (MR-proADM) as a Biomarker of Invasive Bacterial Infection in Children: A Systematic Review.
中区肾上腺髓质素原 (MR-proADM) 作为儿童侵袭性细菌感染生物标志物的诊断价值:系统评价。
- DOI:
10.21203/rs.3.rs-63023/v1 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Corr;D. Fairley;J. McKenna;Michael Shields;T. Waterfield - 通讯作者:
T. Waterfield
Fast and Frugal Models of Clinical Judgment in Novice and Expert Physicians
新手和专家医生快速、节俭的临床判断模型
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:3.6
- 作者:
F. Kee;J. Jenkins;Seana McIlwaine;C. Patterson;S. Harper;Michael Shields - 通讯作者:
Michael Shields
Michael Shields的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Shields', 18)}}的其他基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Workshop: Uncertainty Quantification in Computational Solid and Structural Materials Modeling; Baltimore, Maryland; January 17-18, 2019
研讨会:计算实体和结构材料建模中的不确定性量化;
- 批准号:
1901684 - 财政年份:2018
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
CAREER: Higher-Order Methods for Nonlinear Stochastic Structural Dynamics
职业:非线性随机结构动力学的高阶方法
- 批准号:
1652044 - 财政年份:2017
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
GOALI: Improving the Reliability of Aluminum Structures During Fire Through Computational Modeling
目标:通过计算建模提高火灾期间铝结构的可靠性
- 批准号:
1400387 - 财政年份:2014
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332275 - 财政年份:2024
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319535 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: GEM--How Upstream Solar Wind Conditions Determine the Properties of the Foreshock Backstreaming Ions
合作研究:GEM——上游太阳风条件如何决定前震回流离子的特性
- 批准号:
2247759 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: Characterizing Northern Hemisphere Atmospheric Variability from Central American Wind Gap-Induced Upwelling
合作研究:通过中美洲风隙引起的上升流来表征北半球大气变化
- 批准号:
2303599 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: The Relationship between the Trade Wind Inversion Layer and the Seasonal Development of the Southeast Pacific Inter-Tropical Convergence Zone (ITCZ)
合作研究:信风逆温层与东南太平洋热带辐合带(ITCZ)季节发展的关系
- 批准号:
2303227 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: GEM--How Upstream Solar Wind Conditions Determine the Properties of the Foreshock Backstreaming Ions
合作研究:GEM——上游太阳风条件如何决定前震回流离子的特性
- 批准号:
2420710 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: The Relationship between the Trade Wind Inversion Layer and the Seasonal Development of the Southeast Pacific Inter-Tropical Convergence Zone (ITCZ)
合作研究:信风逆温层与东南太平洋热带辐合带(ITCZ)季节发展的关系
- 批准号:
2303225 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319536 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant
Collaborative Research: Evolution and fate of wind-derived internal wave energy
合作研究:风生内波能的演化和命运
- 批准号:
2319609 - 财政年份:2023
- 资助金额:
$ 31.88万 - 项目类别:
Standard Grant