Collaborative Research: Transport Processes Affecting High-Energy Solar Energetic Particles Observed at Earth

合作研究:影响地球上观测到的高能太阳能高能粒子的传输过程

基本信息

  • 批准号:
    1931252
  • 负责人:
  • 金额:
    $ 47.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The Sun occasionally has massive eruptions that are capable of producing very high-energy particulate radiation. These "solar cosmic rays" are created near the Sun, move through space between the Sun and Earth, and impinge on the Earth's upper atmosphere. These particles pose a significant radiation hazard to humans in space, space hardware, and may even increase the radiation dosage received by airline crews. The project teams can measure these particles using Earth-based detectors, known as neutron monitors, which are also used to measure galactic cosmic rays that come from outside our solar system. Relating the size of any given solar storm -- i.e. the amount of energy released or how big it is, etc. -- to the intensity of the particles at Earth requires a careful and thorough study of how these particles move between the Sun and the Earth. This "transport" is not uniform, and the resulting intensity at Earth depends on a number of factors, such as the nature of the magnetic field in space, that must be studied carefully. That is what this three-year collaborative project is about, and it involves numerical modeling and comparing those modeling results with neutron monitor data. The research studies address the general problem of understanding the space radiation environment and space weather especially that from solar flares, leading to more accurate future predictions.This three-year collaborative project will investigate the role of interplanetary transport, in the form of pitch-angle scattering, cross-field diffusion, field-line meandering, and drifts, of high-energy solar particles in affecting the observed intensity and direction at Earth, seen as ground-level enhancements (GLE) in Earth's neutron monitors. GLE events can often show very unusual profiles in terms of the observed intensity versus time and anisotropy. Some show an abrupt, short-lived peak followed by a gradual decay, or even re-enhancement, followed by a decay. The observed profiles provide important information about the nature of the particle transport from the Sun to the Earth, which has not been fully explored. The project teams will perform a large number of numerical simulations which solve the equations of motion of a large number of individual particles moving in a set of kinematically specified interplanetary magnetic fields. In parallel, they will also analyze the neutron monitor data set for GLE events, characterizing the intensity versus time at various stations. Through collaboration, they will identify events to compare directly with the numerical simulations. The numerical simulations will consider a number of important new effects which have not yet been completely explored, including the heliospheric current sheet, which likely has a profound effect on ~GeV-energy particles. In addition, the researchers will consider the importance of field-line meandering, which can lead to a non-uniform intensity of high-energy solar particles seen at Earth. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳偶尔会有大规模的喷发,能够产生非常高能量的粒子辐射。 这些“太阳宇宙射线”在太阳附近产生,穿过太阳和地球之间的空间,撞击地球的高层大气。 这些粒子对太空中的人类、太空硬件构成重大辐射危害,甚至可能增加航空公司机组人员所接受的辐射剂量。 项目团队可以使用地球上的探测器来测量这些粒子,这些探测器被称为中子监测器,也被用来测量来自太阳系以外的银河宇宙射线。 将任何给定的太阳风暴的大小-即释放的能量或大小等-与地球上粒子的强度相关联,需要仔细和彻底地研究这些粒子如何在太阳和地球之间移动。 这种“传输”是不均匀的,在地球上产生的强度取决于许多因素,如空间磁场的性质,必须仔细研究。 这就是这个为期三年的合作项目,它涉及数值建模,并将这些建模结果与中子监测数据进行比较。 这项为期三年的合作项目将研究行星际传输的作用,其形式包括俯仰角散射、交叉场扩散、场线弯曲和漂移,高能太阳粒子对地球观测强度和方向的影响,被视为地球中子监测器中的地面增强(GLE)。 GLE事件通常可以显示非常不寻常的配置文件中观察到的强度与时间和各向异性。 有些表现出突然的、短暂的峰值,然后逐渐衰减,甚至再增强,然后衰减。 观测到的剖面提供了关于粒子从太阳向地球传输的性质的重要信息,这一点尚未得到充分探索。 项目小组将进行大量的数值模拟,求解大量单个粒子在一组运动学指定的行星际磁场中运动的运动方程。 与此同时,他们还将分析GLE事件的中子监测器数据集,描述各个台站的强度与时间的关系。 通过合作,他们将识别事件,直接与数值模拟进行比较。 数值模拟将考虑一些尚未完全探索的重要新效应,包括日光层电流片,它可能对~ GeV能量粒子产生深远影响。 此外,研究人员还将考虑场线弯曲的重要性,这可能导致在地球上看到的高能太阳粒子的强度不均匀。 该项目的研究和EPO议程支持AGS部门在发现、学习、多样性和跨学科研究方面的战略目标。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joe Giacalone其他文献

A Model of Double Coronal Hard X-Ray Sources in Solar Flares
太阳耀斑中双日冕硬X射线源模型
  • DOI:
    10.3847/1538-4357/ac731b
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangliang Kong;Jing Ye;Bin Chen;Fan Guo;Chengcai Shen;Xiaocan Li;Sijie Yu;Yao Chen;Joe Giacalone
  • 通讯作者:
    Joe Giacalone
Numerical Modeling of Energetic Electron Acceleration, Transport, and Emission in Solar Flares: Connecting Loop-top and Footpoint Hard X-Ray Sources
太阳耀斑中高能电子加速、传输和发射的数值模拟:连接环顶和足点硬 X 射线源
  • DOI:
    10.3847/2041-8213/aca65c
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangliang Kong;Bin Chen;Fan Guo;Chengcai Shen;Xiaocan Li;Jing Ye;Lulu Zhao;Zelong Jiang;Sijie Yu;Yao Chen;Joe Giacalone
  • 通讯作者:
    Joe Giacalone

Joe Giacalone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joe Giacalone', 18)}}的其他基金

Collaborative Research: ANSWERS: Solar Energetic Particles, Solar Neutrons, and a New Space Weather Facility in Hawaii
合作研究:答案:太阳高能粒子、太阳中子和夏威夷的新空间天气设施
  • 批准号:
    2149810
  • 财政年份:
    2022
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Electron Acceleration and Emissions from the Solar Flare Termination Shock
合作研究:太阳耀斑终止激波的电子加速和发射
  • 批准号:
    1735422
  • 财政年份:
    2017
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE--Observations and Modeling of the Longitudinal Extent and Variation of Multi-Spacecraft Solar Energetic Particle (SEP) Events
合作研究:SHINE——多航天器太阳高能粒子(SEP)事件的纵向范围和变化的观测和建模
  • 批准号:
    1154223
  • 财政年份:
    2012
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
CAREER: Integrated Research and Education in Solar Physics, Space Weather, and Energetic Charged Particles
职业:太阳物理、空间天气和高能带电粒子的综合研究和教育
  • 批准号:
    0447354
  • 财政年份:
    2005
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
SHINE: Sources of Shock-Associated Energetic Particles in the Inner Heliosphere
闪耀:日球层内与冲击相关的高能粒子的来源
  • 批准号:
    0327773
  • 财政年份:
    2003
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Geochronology-Based Sediment Provenance Analysis Through Physico-Mechanical Characterization of Zircon Transport
合作研究:通过锆石运移的物理机械表征改进基于地质年代学的沉积物物源分析
  • 批准号:
    2314016
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: IntBIO: Micro level oxygen transport mechanisms in elite diving mammals: Capillary RBC to myofiber
合作研究:IntBIO:精英潜水哺乳动物的微水平氧运输机制:毛细血管红细胞到肌纤维
  • 批准号:
    2316378
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225370
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chemical Tools to Elucidate Glycolipid Biosynthesis and Transport in the Corynebacterineae
合作研究:阐明棒状杆菌亚科糖脂生物合成和运输的化学工具
  • 批准号:
    2303703
  • 财政年份:
    2023
  • 资助金额:
    $ 47.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了