Elements: Enabling Accurate Thermal Transport Calculations in LAMMPS
要素:在 LAMMPS 中实现精确的热传输计算
基本信息
- 批准号:1931436
- 负责人:
- 金额:$ 31.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational thermal transport research is critical to the development of new materials that can address challenging energy and environmental problems. Molecular dynamics (MD) simulations are used extensively to study thermal transport in materials. One of the most widely used MD software packages is the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). It is the primary aim of this project to create and carefully implement improved thermal transport calculation methods in LAMMPS. This problem is made challenging by the fact that this software has hundreds of thousands of users and the solution must be merged into the core LAMMPS code, as opposed to offered as a modular "plug-in". The three objectives of the project are: (1) to implement a corrected heat flux computation for all supported many-body potentials in LAMMPS, (2) to identify the types of molecular systems most affected by the changed heat flux computations, and (3) educate the LAMMPS community on how to implement heat flux in new potentials correctly as well as train new scientists to contribute professional-quality code to the LAMMPS code base. This research will, among other broad impacts, enable large-scale computational screening of materials to accurately predict their thermal properties, which fulfills one of the key goals of the Materials Genome Initiative (MGI). Furthermore, it is an innovative, scalable, reusable software component that supports training for the broad LAMMPS user community as well as general workforce development via training to undergraduates, and ensures the new software capacities are widely available via the open-source LAMMPS package. Additionally, the project provides professional software engineering training to graduate and undergraduate students via a highly-trained resident software developer and resources from the Center for Research Computing at the University of Pittsburgh. Due to the large user base and open source nature of LAMMPS, the research is expected to have a broad impact; these software innovations will be widely available across both industry and academia.The most common MD technique to compute thermal conductivity, the Green-Kubo method, yields incorrect results in LAMMPS for the majority of molecular simulations. Although the ramifications of the error in the heat flux for the thousands of papers already published using LAMMPS has yet to be fully determined, preliminary data indicates that for liquid hydrocarbons, the heat flux through a many-body potential can be underreported by 95%, leading to a total error of the heat flux of 22%. Unless correct thermal transport calculations can be achieved and implemented for this widely used and highly optimized software package, research and development of materials with novel thermal properties will be significantly hindered. There is no widely available MD code that is able to correctly compute heat flux. The one exception is for molecular systems where only pair-wise interactions exist (which excludes all molecules with greater than two atoms), in which case the current LAMMPS implementation gives correct results. The heat flux computation problem in LAMMPS was identified more than four years ago, but the lack of a correct implementation in any widely used MD software package speaks to the challenge of finding and dedicating software engineers to do this important work. This project addresses the theory, implementation pathway, and validation strategy for an expansive re-implementation of heat flux computations in LAMMPS for many-body potentials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算热输运研究对于开发能够解决具有挑战性的能源和环境问题的新材料至关重要。分子动力学(MD)模拟被广泛用于研究材料中的热输运。大规模原子/分子大规模并行模拟器(LAMMPS)是最广泛使用的MD软件包之一。本项目的主要目的是在LAMMPS中创建并仔细实施改进的热传输计算方法。这个问题是具有挑战性的事实,该软件有数十万用户和解决方案必须合并到核心LAMMPS代码,而不是作为一个模块化的“插件”提供。该项目的三个目标是:(1)对LAMMPS中所有支持的多体势进行修正的热流计算,(2)识别受变化的热流计算影响最大的分子系统类型,和(3)教育LAMMPS社区如何正确实施新潜力中的热通量,并培训新科学家为专业做出贡献-质量代码到LAMMPS代码库。除了其他广泛的影响外,这项研究将使材料的大规模计算筛选能够准确预测其热特性,这实现了材料基因组计划(MGI)的关键目标之一。此外,它是一个创新的,可扩展的,可重复使用的软件组件,支持广泛的LAMMPS用户社区的培训,以及通过对本科生的培训进行一般劳动力开发,并确保通过开源LAMMPS包广泛提供新的软件功能。此外,该项目通过匹兹堡大学研究计算中心训练有素的常驻软件开发人员和资源,为研究生和本科生提供专业的软件工程培训。由于LAMMPS的庞大用户群和开源性质,该研究预计将产生广泛的影响;这些软件创新将在工业界和学术界广泛使用。计算热导率的最常见MD技术Green-Kubo方法在LAMMPS中对大多数分子模拟产生不正确的结果。虽然已经发表的数千篇使用LAMMPS的论文中热通量误差的后果尚未完全确定,但初步数据表明,对于液态烃,通过多体势的热通量可以被低估95%,导致热通量的总误差为22%。除非能够实现正确的热输运计算,并为这一广泛使用和高度优化的软件包,研究和开发具有新的热性能的材料将受到显着阻碍。没有广泛可用的MD代码能够正确计算热通量。唯一的例外是仅存在成对相互作用的分子系统(排除了所有具有两个以上原子的分子),在这种情况下,当前的LAMMPS实现给出了正确的结果。LAMMPS中的热通量计算问题在四年多前就被发现了,但是在任何广泛使用的MD软件包中缺乏正确的实现,这说明了寻找和专门的软件工程师来做这项重要工作的挑战。该项目涉及LAMMPS中多体势热通量计算的扩展重新实施的理论、实施途径和验证策略。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity
- DOI:10.1038/s41524-022-00961-x
- 发表时间:2023-01-20
- 期刊:
- 影响因子:9.7
- 作者:Islamov, Meiirbek;Babaei, Hasan;Wilmer, Christopher E.
- 通讯作者:Wilmer, Christopher E.
Heat Flux for Many-Body Interactions: Corrections to LAMMPS
- DOI:10.1021/acs.jctc.9b00252
- 发表时间:2019-10-01
- 期刊:
- 影响因子:5.5
- 作者:Boone, Paul;Babaei, Hasan;Wilmer, Christopher E.
- 通讯作者:Wilmer, Christopher E.
Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates
- DOI:10.1038/s41467-020-17822-0
- 发表时间:2020-08-11
- 期刊:
- 影响因子:16.6
- 作者:Babaei, Hasan;DeCoster, Mallory E.;Wilmer, Christopher E.
- 通讯作者:Wilmer, Christopher E.
Effect of Flexibility on Thermal Transport in Breathing Porous Crystals
柔性对呼吸多孔晶体热传输的影响
- DOI:10.1021/acs.jpcc.0c04353
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sezginel, Kutay B.;Lee, Sangsuk;Babaei, Hasan;Wilmer, Christopher E.
- 通讯作者:Wilmer, Christopher E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Wilmer其他文献
Christopher Wilmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Wilmer', 18)}}的其他基金
EAGER: CDS&E: A Computational Roadmap for a Universal Gas Sensor
渴望:CDS
- 批准号:
1937179 - 财政年份:2019
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
2018 Midwest Thermodynamics and Statistical Mechanics Conference (MTSM)
2018年中西部热力学与统计力学会议(MTSM)
- 批准号:
1804482 - 财政年份:2018
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
Understanding Thermal Transport in "Breathing" Porous Crystals
了解“呼吸”多孔晶体中的热传输
- 批准号:
1804011 - 财政年份:2018
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
CAREER: Fundamental Limits of Physical Adsorption in Porous Materials
职业:多孔材料物理吸附的基本限制
- 批准号:
1653375 - 财政年份:2017
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
Enabling Rapid and Accurate Identification of Emerging Vector-Borne and Zoonotic Threats in Indonesia
能够快速准确地识别印度尼西亚新出现的媒介传播和人畜共患威胁
- 批准号:
10084935 - 财政年份:2021
- 资助金额:
$ 31.29万 - 项目类别:
RFA-CK-20-002, Enabling Rapid and Accurate Identification of Emerging Vector-Borne and Zoonotic Threats in Indonesia
RFA-CK-20-002,能够快速准确地识别印度尼西亚新出现的媒介传播和人畜共患威胁
- 批准号:
10656270 - 财政年份:2021
- 资助金额:
$ 31.29万 - 项目类别:
Enabling Rapid and Accurate Identification of Emerging Vector-Borne and Zoonotic Threats in Indonesia
能够快速准确地识别印度尼西亚新出现的媒介传播和人畜共患威胁
- 批准号:
10495166 - 财政年份:2021
- 资助金额:
$ 31.29万 - 项目类别:
Enabling accurate identification and quantification of brown adipose tissue mass by xenon enhanced computed tomography
通过氙增强计算机断层扫描能够准确识别和量化棕色脂肪组织块
- 批准号:
10052750 - 财政年份:2020
- 资助金额:
$ 31.29万 - 项目类别:
Enabling Accurate Ray-Tracing Predictions for 5G Communication Channels
实现 5G 通信通道的准确光线追踪预测
- 批准号:
552711-2020 - 财政年份:2020
- 资助金额:
$ 31.29万 - 项目类别:
Alliance Grants
Enabling accurate identification and quantification of brown adipose tissue mass by xenon enhanced computed tomography
通过氙增强计算机断层扫描能够准确识别和量化棕色脂肪组织块
- 批准号:
10227219 - 财政年份:2020
- 资助金额:
$ 31.29万 - 项目类别:
Conversational Artifical Intelligence - a unique real-time voice analytics technology providing highly accurate behavioural determinations - scalably enabling the identification of fraud in insurance claims
会话人工智能 - 一种独特的实时语音分析技术,可提供高度准确的行为确定 - 可扩展地识别保险索赔中的欺诈行为
- 批准号:
104997 - 财政年份:2019
- 资助金额:
$ 31.29万 - 项目类别:
Feasibility Studies
Collaborative Research: A Microfluidic-CMOS Cross-cut Approach enabling Tri-Modal Biorecognition for Highly Accurate Viral Diagnostics
合作研究:一种微流控-CMOS 横切方法,可实现三模态生物识别,实现高精度病毒诊断
- 批准号:
1711067 - 财政年份:2017
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant
Collaborative Research: A Microfluidic-CMOS Cross-cut Approach enabling Tri-Modal Biorecognition for Highly Accurate Viral Diagnostics
合作研究:一种微流控-CMOS 横切方法,可实现三模态生物识别,实现高精度病毒诊断
- 批准号:
1711165 - 财政年份:2017
- 资助金额:
$ 31.29万 - 项目类别:
Standard Grant