Collaborative Research: Elements: Flexible & Open-Source Models for Materials and Devices

合作研究:要素:灵活

基本信息

  • 批准号:
    1931479
  • 负责人:
  • 金额:
    $ 25.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-11-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The project will develop first principles materials modeling software that can approach multiple length and time scales (multiscale). This software will be capable of modeling systems as complex as entire devices and materials of mesoscopic sizes. Over the course of the project the principal investigators plan to develop an open-source python-based software aimed at standardizing and generalizing multiscale simulations methods. This will enable the use of computer modeling in the design of new compounds, materials and devices. The goals are to render multiscale simulations reproducible and accessible by the broader community. In that context, the project will address the notion of "lab 2.0", by which computer simulations replace laboratory experiments in tasks such as materials design and costly combinatorial searches for viable chemical processes. The software will be self-optimized using machine learning and exploit linear workflows approachable by nonexperts. Education and diversity will be promoted by direct participation of underrepresented minorities from high schools and colleges in hackathon workshops and summer research programs.An approach that leverages the long-range multiscale capabilities of continuum models with accurate short-range atomistic descriptions of specific interactions, and that exploits the ideal scalability of quantum-embedding techniques, will be investigated. The main driver of the proposed implementation will be a Python codebase which will carry out the part of current software that is not computationally heavy, but instead is code heavy where many lines of code are needed in typically non-object-oriented languages. This is key to obtain the desired cluster-topology-agnostic workflows. Longstanding problems related to computational scalability and code stiffness will addressed in a three-pronged approach aimed at developing (1) modular tools implementing modules with highly object-oriented codes (e.g., quantum, classical atomistic, and continuum solvers), (2) hybrid tools implementing combinations of modular tools in a way that best exploits high-performance computing architectures, and (3) hyper tools implementing a high-level data-enabled optimization strategy that generates optimal workflows combining several hybrid tools, thereby making the software of broad applicability and accessible to nonexperts. These goals will render multiscale simulations reproducible and accessible by the broader community. The project will address the "lab 2.0" paradigm, by which computer simulations replace laboratory experiments in tasks such as materials design and combinatorial searches for viable chemical processes. The resultant software will be self-optimized using machine learning and exploit linear workflows approachable by nonexperts. Education and diversity will include the direct participation of underrepresented minorities from high schools and colleges in hackathon workshops and summer research programs.This award by the NSF Office of Advanced Cyberinfrastructure is jointly supported by the Division of Chemistry and the Division of Materials Research within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发可以接近多个长度和时间尺度(多尺度)的第一性原理材料建模软件。该软件将能够建模系统复杂的整个设备和材料的介观尺寸。在整个项目过程中,主要研究人员计划开发一个基于python的开源软件,旨在标准化和推广多尺度模拟方法。这将使在设计新的化合物、材料和设备时使用计算机建模成为可能。目标是使多尺度模拟可复制,并由更广泛的社区访问。在这种背景下,该项目将解决“实验室2.0”的概念,通过计算机模拟取代实验室实验,例如材料设计和昂贵的组合搜索可行的化学过程。该软件将使用机器学习进行自我优化,并利用非专家可接近的线性工作流程。教育和多样性将通过高中和大学中未被充分代表的少数族裔直接参与黑客马拉松研讨会和暑期研究项目来促进。将研究一种利用连续体模型的远程多尺度能力和精确的特定相互作用的短程原子描述,并利用量子嵌入技术的理想可扩展性的方法。所提议的实现的主要驱动因素将是Python代码库,它将执行当前软件中计算量不大的部分,但代码量很大,通常需要在非面向对象语言中编写许多行代码。这是获得所需的与集群拓扑无关工作流的关键。与计算可扩展性和代码刚性相关的长期问题将通过三管齐下的方法来解决,旨在开发(1)模块化工具实现具有高度面向对象代码的模块(例如,量子,经典原子和连续体求解器),(2)混合工具实现模块化工具的组合,以最好地利用高性能计算架构。(3)超级工具实现了一种高层次的数据优化策略,该策略可以结合多个混合工具生成最佳工作流,从而使软件具有广泛的适用性,并且非专家也可以访问。这些目标将使多尺度模拟重现,并为更广泛的社区所利用。该项目将解决“实验室2.0”范例,通过计算机模拟取代实验室实验,例如材料设计和可行化学过程的组合搜索。由此产生的软件将使用机器学习进行自我优化,并利用非专家可接近的线性工作流程。教育和多样性将包括高中和大学中未被充分代表的少数族裔直接参与黑客马拉松研讨会和暑期研究项目。该奖项由美国国家科学基金会高级网络基础设施办公室颁发,由美国国家科学基金会数学和物理科学理事会化学部和材料研究部联合支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oliviero Andreussi其他文献

Oliviero Andreussi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oliviero Andreussi', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Flexible & Open-Source Models for Materials and Devices
合作研究:要素:灵活
  • 批准号:
    2306967
  • 财政年份:
    2022
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
CAREER: Multiscale and Machine Learning Approaches for Electrified Interfaces
职业:电气化接口的多尺度和机器学习方法
  • 批准号:
    2306929
  • 财政年份:
    2022
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Continuing Grant
CAREER: Multiscale and Machine Learning Approaches for Electrified Interfaces
职业:电气化接口的多尺度和机器学习方法
  • 批准号:
    1945139
  • 财政年份:
    2020
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
  • 批准号:
    2411387
  • 财政年份:
    2024
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO-CM: The occurrences of the rare earth elements in highly weathered sedimentary rocks, Georgia kaolins.
合作研究:GEO-CM:强风化沉积岩、乔治亚高岭土中稀土元素的出现。
  • 批准号:
    2327660
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329192
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311091
  • 财政年份:
    2023
  • 资助金额:
    $ 25.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了