CAREER: Multiscale and Machine Learning Approaches for Electrified Interfaces
职业:电气化接口的多尺度和机器学习方法
基本信息
- 批准号:2306929
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dr. Oliviero Andreussi of the University of North Texas is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry and from the Condensed Matter and Materials Theory (CMMT) program in the Division of Materials Research. He will develop and apply new computational tools to the characterization of chemical processes at solid-liquid interfaces. The project combines hierarchical models and machine-learning techniques to provide accurate and inexpensive descriptions of aspects that control the operation of chemical devices, such as batteries, fuel cells, and sensing devices. The developed techniques are aimed at the systematic virtual screening of materials for electrocatalysis, starting from the emerging class of two-dimensional materials. The development of a computational mindset to address emerging technological problems represents the key educational component of the project. The educational component extends the use of computation to visualize science and to make it accessible and attractive to the public. Hackathon workshops will be adopted to engage younger researchers in computational thinking. The team will also use and develop visualization tools to expand the impact of the research to other fields and disciplines.Dr. Oliviero Andreussi is developing accurate and transferable approaches for modeling solid-liquid interfaces. To accomplish this goal, this project features an integrated research and education program focused on extending continuum models of electrochemical environments by embedding a first-principles description of materials. Dr Andreussi and his research group are pursuing new developments in hybrid multiscale approaches and machine-learning strategies of environment effects. The research improves the transferability and accuracy of simulations of wet and electrified interfaces. These new methods and techniques are applied to study the effects of complex embedding environments on the emerging class of two-dimensional (2D) materials. The developed computational tools allow a systematic screening of existing and proposed 2D materials to explore exfoliation strategies, to verify their stability in complex environments, to characterize their (electro-)catalytic activities, and to identify their role in sensing devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
北德克萨斯大学的Oliviero Andreussi博士获得了化学系化学理论,模型和计算方法计划以及材料研究部凝聚态物质和材料理论(CMMT)计划的奖项。 他将开发和应用新的计算工具来表征固液界面的化学过程。该项目结合了分层模型和机器学习技术,为控制化学设备(如电池、燃料电池和传感设备)运行的各个方面提供准确且廉价的描述。所开发的技术旨在从新兴的二维材料类开始,对电催化材料进行系统的虚拟筛选。发展计算思维以解决新出现的技术问题是该项目的关键教育组成部分。教育部分扩展了计算的使用,使科学可视化,并使其对公众具有吸引力。 将通过黑客研讨会吸引年轻的研究人员参与计算思维。 该团队还将使用和开发可视化工具,以扩大研究对其他领域和学科的影响。Oliviero Andreussi博士正在开发精确和可转移的方法来建模固液界面。为了实现这一目标,该项目的特点是一个综合的研究和教育计划,重点是通过嵌入材料的第一性原理描述来扩展电化学环境的连续模型。Andreussi博士和他的研究小组正在寻求混合多尺度方法和环境影响机器学习策略的新发展。 该研究提高了湿界面和带电界面模拟的可移植性和准确性。这些新的方法和技术被应用于研究复杂的嵌入环境对新兴的二维(2D)材料的影响。开发的计算工具允许现有的和拟议的二维材料进行系统的筛选,探索剥离策略,验证其在复杂环境中的稳定性,表征其(电)催化活性,并确定其在传感设备中的作用。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliviero Andreussi其他文献
Oliviero Andreussi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliviero Andreussi', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Flexible & Open-Source Models for Materials and Devices
合作研究:要素:灵活
- 批准号:
2306967 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Multiscale and Machine Learning Approaches for Electrified Interfaces
职业:电气化接口的多尺度和机器学习方法
- 批准号:
1945139 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: Elements: Flexible & Open-Source Models for Materials and Devices
合作研究:要素:灵活
- 批准号:
1931479 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Multiscale Simulation and Machine Learning for Smart Polymer Design
职业:智能聚合物设计的多尺度仿真和机器学习
- 批准号:
2237470 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
- 批准号:
10658686 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:
10659397 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Machine learning multiscale simulation of photoconductivity in correlated oxides
相关氧化物光电导性的机器学习多尺度模拟
- 批准号:
2887639 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Studentship
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
- 批准号:
2331482 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
- 批准号:
2132336 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Studentship
Machine learning assisted multiscale computational modeling of particle-laden flows: application to blood flow and targeted drug delivery
机器学习辅助颗粒负载流的多尺度计算建模:在血流和靶向药物输送中的应用
- 批准号:
571196-2021 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Banting Postdoctoral Fellowships Tri-council
Machine Learning for Effective Computation in Multiscale Hyperbolic Systems
用于多尺度双曲系统中有效计算的机器学习
- 批准号:
2208504 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
- 批准号:
2132383 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant