Enhancing Quantum Efficiency of Thin Film Solar Cells via Joint Characterization of Radiation and Recombination

通过辐射和复合的联合表征提高薄膜太阳能电池的量子效率

基本信息

项目摘要

Thin film solar cells are at the forefront of innovation in photovoltaics technology. However, the efficiency of thin film solar cells is significantly lower than bulk cells, limiting the scale of their application. Light trapping schemes based on structural modifications have been used to improve the efficiency of nano-scale photovoltaic devices. These schemes affect both radiative and electrical characteristics of thin semiconductors in complex ways. These effects are neither accurately modeled nor well known. This research fills this knowledge gap by modeling the combined radiative and electrical effects of light trapping. The proposed models will be diverse, comprehensive and more accurate than the existing literature. By using the improved models, novel architectures can be designed for solar cell devices with enhanced conversion efficiencies and reduced energy payback periods compared to the state-of-the-art technology which is highly valuable to the US economy. Additionally, the work leads to better understanding of the radiative effects of nano-structural modifications which is imperative in nano-scale radiation applications beyond photovoltaics.This project investigates methods to systematically enhance the quantum efficiency of nano-scale thin film solar cells. To this end, fundamentals of light-trapping affected radiation at nano-scale are studied. Analytical models are formulated for explaining radiation in non-homogenous semiconductors along with electrical carrier recombination. The radiative models are based on improved estimations of the local density of optical states in the presence of pseudo-periodic Metallo-dielectric surface and bulk patterns, and accurate estimation of extinction cross-section in plasmonic nano-particles based on improvements of Mie scattering using mathematical shape formulations and data fitting. Overlaying radiative effects from multiple mechanisms are modeled and combined with carrier transport models under realistic material imperfections and physical defects assumptions. The work utilizes the improved models to design structures with broad-band/angle optical absorption beyond the ergodic limits, and quantum efficiencies approaching the limits of bulk cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
薄膜太阳能电池处于光伏技术创新的前沿。然而,薄膜太阳能电池的效率明显低于体电池,限制了其应用的规模。基于结构修饰的光捕获方案已被用于提高纳米级光伏器件的效率。这些方案以复杂的方式影响薄半导体的辐射和电特性。这些影响既没有精确的模型,也不为人所知。这项研究通过模拟光捕获的综合辐射和电效应来填补这一知识空白。所提出的模型将是多样化的,全面的和更准确的比现有的文献。通过使用改进的模型,可以为太阳能电池设备设计新颖的架构,与最先进的技术相比,具有更高的转换效率和更短的能源回收期,这对美国经济非常有价值。此外,这项工作有助于更好地理解纳米结构修饰的辐射效应,这在光伏以外的纳米尺度辐射应用中是必不可少的。本项目研究系统地提高纳米级薄膜太阳能电池量子效率的方法。为此,在纳米尺度上研究了光捕获影响辐射的基本原理。建立了解释非均质半导体辐射和载流子复合的解析模型。辐射模型基于伪周期金属介电表面和体图存在时光学态局部密度的改进估计,以及基于改进的Mie散射的等离子体纳米粒子消光截面的精确估计,使用数学形状公式和数据拟合。在实际材料缺陷和物理缺陷假设下,对多种机制的叠加辐射效应进行了建模,并与载流子输运模型相结合。这项工作利用改进的模型来设计具有超过遍历极限的宽带/角度光吸收和接近体电池极限的量子效率的结构。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband solar distributed Bragg reflector design using numerical optimization
  • DOI:
    10.1016/j.solener.2021.04.045
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Hansol Kim;Mine Kaya;S. Hajimirza
  • 通讯作者:
    Hansol Kim;Mine Kaya;S. Hajimirza
Nonparametric design of nanoparticles with maximum scattering using evolutionary topology optimization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shima Hajimirza其他文献

Using hybrid deep learning to predict spectral responses of quantum dot-embedded nanoporous thin-film solar cells
  • DOI:
    10.1016/j.jqsrt.2024.109258
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Farhin Tabassum;George-Rafael Domenikos;Shima Hajimirza
  • 通讯作者:
    Shima Hajimirza

Shima Hajimirza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shima Hajimirza', 18)}}的其他基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Continuing Grant
EAGER:Predictive Surrogate Modeling and Analysis of Radiative Heat transfer in Porous Media
EAGER:多孔介质中辐射传热的预测替代模型和分析
  • 批准号:
    2054124
  • 财政年份:
    2020
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Standard Grant
Enhancing Quantum Efficiency of Thin Film Solar Cells via Joint Characterization of Radiation and Recombination
通过辐射和复合的联合表征提高薄膜太阳能电池的量子效率
  • 批准号:
    2103008
  • 财政年份:
    2020
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Standard Grant
EAGER:Predictive Surrogate Modeling and Analysis of Radiative Heat transfer in Porous Media
EAGER:多孔介质中辐射传热的预测替代模型和分析
  • 批准号:
    1926882
  • 财政年份:
    2019
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Efficiency Metrology of Solution-Processed Quantum Dot Optoelectronics
溶液处理量子点光电器件的量子效率计量
  • 批准号:
    2891817
  • 财政年份:
    2023
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Studentship
Quantum-Resistance and Efficiency of Communications in Connected and Autonomous Vehicles
联网和自动驾驶车辆中通信的量子阻抗和效率
  • 批准号:
    536635-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Collaborative Research and Development Grants
The power and efficiency of non-equilibrium quantum heat engines
非平衡量子热机的功率和效率
  • 批准号:
    566580-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Flame-Synthesized Carbon Quantum Dots for High-Efficiency Light Harvesting Applications
用于高效光收集应用的火焰合成碳量子点
  • 批准号:
    546055-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Postdoctoral Fellowships
Quantum-Resistance and Efficiency of Communications in Connected and Autonomous Vehicles
联网和自动驾驶车辆中通信的量子阻抗和效率
  • 批准号:
    536635-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Collaborative Research and Development Grants
High Quantum Efficiency Detectors
高量子效率探测器
  • 批准号:
    10001572
  • 财政年份:
    2021
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Feasibility Studies
Flame-Synthesized Carbon Quantum Dots for High-Efficiency Light Harvesting Applications
用于高效光收集应用的火焰合成碳量子点
  • 批准号:
    546055-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Postdoctoral Fellowships
The power and efficiency of non-equilibrium quantum heat engines
非平衡量子热机的功率和效率
  • 批准号:
    566580-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Development of three-dimensional barrier layer for improving carrier collection efficiency in quantum dot solar cells
开发三维势垒层以提高量子点太阳能电池的载流子收集效率
  • 批准号:
    20K15183
  • 财政年份:
    2020
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Security and Efficiency Analysis of Quantum Private Information Retrieval and Quantum Oblivious Transfer
量子隐私信息检索和量子不经意传输的安全性和效率分析
  • 批准号:
    20J11484
  • 财政年份:
    2020
  • 资助金额:
    $ 40.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了