Good structures in higher dimensional birational geometry

高维双有理几何中的良好结构

基本信息

  • 批准号:
    239673722
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Independent Junior Research Groups
  • 财政年份:
    2013
  • 资助国家:
    德国
  • 起止时间:
    2012-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this proposal is to make ground-breaking progress in geometry of higher dimensional varieties. Good minimal models: The aim of the Minimal Model Program is to classify higher dimensional algebraic varieties, generalising the classification of curves and surfaces. The purpose of the classification is to give a rough understanding of the structure of projective manifolds, and the programme was completely resolved only in dimension 3 in the 1980s. Recently there has been spectacular progress in the field, partially due to me and my coauthors. However, the programme remains far from being complete, and the main open problems left are Abundance conjecture and existence of good models. The goal of this project is to prove these two conjectures by applying recent techniques pioneered by me and my coauthors, and by establishing a new extension result for pluricanonical forms. Calabi-Yau manifolds: Calabi-Yau manifolds represent one of the most important classes of manifolds, and they are notoriously difficult to study. Foundational work on the structure of the K¨ ahler cone of a Calabi-Yau and the existence of rational curves was done in the 1990s. An important and extremely hard Cone conjecture of Morrison and Kawamata, motivated by mirror symmetry, predicts that the nef and movable cones of a Calabi-Yau are, vaguely speaking, close to being rational polyhedral. The conjecture implies existence of rational curves on Calabi-Yau threefolds with Picard number 2. I plan to prove this conjecture for Calabi-Yau threefolds of small Picard rank, which would be the biggest breakthrough to date. The approach uses recent techniques introduced by me and my coauthors, and reduction to positive characteristic.
这项提议的目标是在高维变化的几何学方面取得突破性进展。良好的最小模型:最小模型程序的目标是对高维代数簇进行分类,推广曲线和曲面的分类。分类的目的是对射影流形的结构有一个粗略的了解,该方案在1980年代仅在维度3中完全解决。最近,该领域取得了惊人的进展,这在一定程度上要归功于我和我的合著者。然而,该计划仍远未完成,留下的主要悬而未决的问题是大量的猜测和良好模型的存在。这个项目的目的是通过应用我和我的合著者开创的最新技术来证明这两个猜想,并建立一个关于多重正则型的新的推广结果。Calabi-Yau流形:Calabi-Yau流形是流形中最重要的一类,它的研究是出了名的困难。关于Calabi-Yau的K?Ahler锥的结构和有理曲线的存在性的基础性工作是在20世纪90年代完成的。Morison和Kawamata的一个重要且极其困难的圆锥猜想,在镜像对称性的推动下,预言了Calabi-Yau的nef和可动圆锥,隐约地说,接近于有理多面体。这个猜想意味着在Picard数为2的Calabi-Yau三重曲线上存在有理曲线。我计划证明这个猜想适用于小Picard秩三重Calabi-Yau曲线,这将是迄今为止最大的突破。该方法使用了我和我的合著者介绍的最新技术,并将其归结为积极特征。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the B-Semiampleness Conjecture
  • DOI:
    10.46298/epiga.2019.volume3.5063
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Floris;Vladimir Lazi'c
  • 通讯作者:
    E. Floris;Vladimir Lazi'c
Nef Line Bundles on Calabi–Yau Threefolds, I
CalabiâYau Threefolds 上的 Nef Line 捆绑包,I
On Generalised Abundance, I
On the number and boundedness of log minimal models of general type
Automorphisms of Calabi-Yau threefolds with Picard number three
  • DOI:
    10.2969/aspm/07410279
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vladimir Lazi'c;K. Oguiso;T. Peternell
  • 通讯作者:
    Vladimir Lazi'c;K. Oguiso;T. Peternell
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Vladimir Lazic其他文献

Professor Dr. Vladimir Lazic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
  • 批准号:
    60672101
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目
新型嘧啶并三环化合物的合成研究
  • 批准号:
    20572032
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
磁层重联区相干结构动力学过程的观测研究
  • 批准号:
    40574067
  • 批准年份:
    2005
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

The role of higher-order genomic structures in cardiomyocyte nuclei under mechanical stress
机械应力下心肌细胞核中高阶基因组结构的作用
  • 批准号:
    23K07589
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biochemical and structural characterization of the cell wall synthesis complex required for bacterial division
细菌分裂所需的细胞壁合成复合物的生化和结构表征
  • 批准号:
    10750639
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
  • 批准号:
    10593377
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
  • 批准号:
    2302447
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Rapid Assessment of Proteoform-Resolved Higher-Order Structures
快速评估蛋白质型解析的高阶结构
  • 批准号:
    10714301
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Higher Spin Structures on Orbifolds
Orbifolds 上的更高自旋结构
  • 批准号:
    2889168
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Synthetic morphogenesis to recapitulate multicellular airway branching patterns
合成形态发生来概括多细胞气道分支模式
  • 批准号:
    10606897
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Next generation biofabrication system for bottom-up processing of novel sheet-like biomaterials into higher-order patient specific tissue structures
下一代生物制造系统,用于将新型片状生物材料自下而上加工成更高阶的患者特异性组织结构
  • 批准号:
    569315-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
  • 批准号:
    RGPIN-2021-03919
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Prenatal Arsenic Exposure Alters Keratinocyte Stem Cells' Fate and Induces Skin Tumors with Higher Malignant Potential
产前砷暴露会改变角质形成细胞干细胞的命运并诱发具有更高恶性潜力的皮肤肿瘤
  • 批准号:
    10452209
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了