Collaborative Research: A general approach to partitioning contributions from multiple drivers affecting individuals, populations, and communities
协作研究:划分影响个人、人口和社区的多个驱动因素贡献的通用方法
基本信息
- 批准号:1933497
- 负责人:
- 金额:$ 75.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The patterns in nature that ecologists strive to understand are usually the result of many interacting processes. Why are there about 1100 bird species in the US, rather than 110 or 11,000? To answer a question like that, it is not enough to list all the contributing factors; we need to know which ones are more and less important. Like a cook who knows which ingredients are essential for a recipe, ecologists ask, for example, what 'ingredients' are crucial for preserving biodiversity in an ecosystem altered by human activities, and which are less critical. The goal of this project are first, to give ecologists better tools for identifying the factors most important in creating observed patterns, based on a general statistical method called "Functional Analysis of Variance" (fANOVA). Second, the new tools will be used to extend ecological theories explaining how competing species can coexist, to identify which vital rates (e.g., survival rates at different ages) contribute most to fluctuations in population abundance, and to identify which vital rates, at which ages or life-stages, contribute most to the large within-population variation in lifetime outcomes (such total number of offspring) that cannot be explained by observable traits. The researchers will also develop new computing methods and statistical theory to broaden the applicability of fANOVA in ecology and conduct workshops to teach others to use the new tools. fANOVA is a general variance decomposition method for nonlinear input-output relationships, decomposing output variance into direct contributions from variation in each input, contributions from interactions of all orders (pairwise, triplets, etc.), and unexplained residual variation. Many ecological questions involve processes operating over large spatial and temporal scales, so experimental manipulations are infeasible and inference must come from dynamic models fitted to empirical data. This project will explore how fANOVA can play the role in these situations that conventional ANOVA does in simple experimental designs, answering questions about the relative importance of different processes using models fitted to empirical data. fANOVA is not 'plug and play': the general recipe is often computationally intractable and hard to interpret in high-dimensional situations. Each new application needs to overcome these challenges. Specific objectives include: (1) Develop an exact and complete version of Life Table Response Experiment analysis, and using a meta-analysis of hundreds of published models to contrast fANOVA with current approaches; (2) Extend recently developed fANOVA-based methods of quantifying coexistence mechanisms to include systems with explicit spatial structure and clumped species distributions; (3) Determine how the magnitude of within- population random variation in lifetime reproductive success is related to life history and functional traits through a meta-analysis of published models; (4) Develop general systematic tools to determine when or where in the life cycle luck (random differences in outcomes such as survival and fecundity) matters the most for lifetime outcomes; (5) Develop statistical theory to determine how models should be constructed for optimal estimation and inference about luck.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生态学家努力理解的自然界模式通常是许多相互作用过程的结果。为什么美国有大约1100种鸟类,而不是110或11,000种?要回答这样一个问题,列出所有的影响因素是不够的;我们需要知道哪些因素更重要,哪些不重要。就像一个厨师知道哪些配料是食谱中必不可少的一样,生态学家会问,例如,在一个被人类活动改变的生态系统中,哪些“配料”对保护生物多样性至关重要,哪些不那么重要。这个项目的目标是首先,给生态学家更好的工具,以确定最重要的因素,在创建观察到的模式,基于一个通用的统计方法称为“方差函数分析”(fANOVA)。其次,新工具将用于扩展解释竞争物种如何共存的生态理论,以确定哪些生命率(例如,不同年龄的存活率)对种群丰度的波动贡献最大,并确定哪些年龄或生命阶段的生命率对无法用可观察性状解释的寿命结果(如后代总数)的大种群内变异贡献最大。研究人员还将开发新的计算方法和统计理论,以扩大fANOVA在生态学中的适用性,并举办研讨会,教其他人使用新工具。fANOVA是用于非线性输入-输出关系的通用方差分解方法,将输出方差分解为来自每个输入中的变化的直接贡献、来自所有阶次(成对、三重等)的相互作用的贡献,以及无法解释的残余变异许多生态学问题涉及到大的时空尺度上的过程,因此实验操作是不可行的,推理必须来自拟合经验数据的动态模型。本项目将探讨fANOVA如何在这些情况下发挥传统ANOVA在简单实验设计中的作用,使用拟合经验数据的模型回答有关不同过程的相对重要性的问题。fANOVA不是“即插即用”:一般的配方通常在计算上难以处理,并且难以在高维情况下解释。每个新的应用程序都需要克服这些挑战。具体目标包括:(1)开发一个精确和完整的生命表响应实验分析版本,并使用数百个已发表模型的荟萃分析来比较fANOVA与当前方法;(2)扩展最近开发的基于fANOVA的共存机制量化方法,以包括具有明确空间结构和聚集物种分布的系统;(3)通过对已发表的模型进行荟萃分析,确定终生生殖成功的群体内随机变异的幅度如何与生活史和功能性状相关;(4)开发通用的系统化工具,以确定在生命周期中何时或何地运气(结果的随机差异,如生存和生育能力)对终身结果最重要;(五)发展统计理论,以确定如何构建模型,以实现对运气的最佳估计和推断。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plant defense synergies and antagonisms affect performance of specialist herbivores of common milkweed
- DOI:10.1002/ecy.3915
- 发表时间:2022-12-26
- 期刊:
- 影响因子:4.8
- 作者:Edwards, Collin B.;Ellner, Stephen P.;Agrawal, Anurag A.
- 通讯作者:Agrawal, Anurag A.
Decision tree boosted varying coefficient models
- DOI:10.1007/s10618-022-00863-y
- 发表时间:2022-09
- 期刊:
- 影响因子:4.8
- 作者:Yichen Zhou;G. Hooker
- 通讯作者:Yichen Zhou;G. Hooker
Approximation trees: statistical reproducibility in model distillation
- DOI:10.1007/s10618-022-00907-3
- 发表时间:2023-01
- 期刊:
- 影响因子:4.8
- 作者:Yichen Zhou;Zhengze Zhou;G. Hooker
- 通讯作者:Yichen Zhou;Zhengze Zhou;G. Hooker
Boosting Random Forests to Reduce Bias; One-Step Boosted Forest and Its Variance Estimate
- DOI:10.1080/10618600.2020.1820345
- 发表时间:2018-03
- 期刊:
- 影响因子:2.4
- 作者:Indrayudh Ghosal;G. Hooker
- 通讯作者:Indrayudh Ghosal;G. Hooker
Continuous assembly required: Perpetual species turnover in two‐trophic‐level ecosystems
需要连续组装:两级营养级生态系统中物种的永久更替
- DOI:10.1002/ecs2.4614
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Spaak, Jurg W.;Adler, Peter B.;Ellner, Stephen P.
- 通讯作者:Ellner, Stephen P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Ellner其他文献
Stephen Ellner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Ellner', 18)}}的其他基金
Collaborative Research: Integral Projection Models for Populations in Varying Environments: Construction and Analysis
合作研究:不同环境中人群的整体投影模型:构建和分析
- 批准号:
1353039 - 财政年份:2014
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Rapid Evolution and the Dynamics of Complex Ecological Communities
快速进化与复杂生态群落的动态
- 批准号:
0813743 - 财政年份:2008
- 资助金额:
$ 75.36万 - 项目类别:
Continuing Grant
Models of Plant Species in Varying Environments (Mathematical Sciences)
不同环境下的植物物种模型(数学科学)
- 批准号:
8201682 - 财政年份:1982
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331278 - 财政年份:2024
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331277 - 财政年份:2024
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331276 - 财政年份:2024
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
- 批准号:
2312263 - 财政年份:2023
- 资助金额:
$ 75.36万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant
Collaborative Research: Testing General Relativity with Gravitational-Wave Observations
合作研究:用引力波观测检验广义相对论
- 批准号:
2308886 - 财政年份:2023
- 资助金额:
$ 75.36万 - 项目类别:
Continuing Grant
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
- 批准号:
10755010 - 财政年份:2023
- 资助金额:
$ 75.36万 - 项目类别:
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
- 批准号:
2307395 - 财政年份:2023
- 资助金额:
$ 75.36万 - 项目类别:
Standard Grant