GOALI: Adaptive Control of Inkjet Printing on 3D Curved Surfaces

GOALI:3D 曲面喷墨打印的自适应控制

基本信息

  • 批准号:
    1933558
  • 负责人:
  • 金额:
    $ 6.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This Grant Opportunity for Academic Liaison with Industry (GOALI) project will apply engineering techniques in adaptive control to greatly expand the surface geometries accessible to inkjet depositing. Inkjet depositing is a valuable technique, with potential applications that vary from wound treatment to advanced manufacturing. However, this potential is currently limited by the practical restriction of inkjet depositing to printing on flat surfaces. This research will enable new classes of technologies, products, and services. The work will be done through a university-industry partnership between researchers at The University of Texas at Dallas and experts at MicroFab Technologies, a Dallas-area organization. The team will focus on two real-world applications: 1) printing customized wound treatments directly onto wounds arising from cancer tissue removal or traumatic injury, and 2) printing labels onto manufactured parts to increase assembly efficiency. Research outcomes will be integrated into engineering education workshops at UT Dallas, as well as exhibits at the Perot Museum of Nature and Science in downtown Dallas.There is a lack of specific knowledge of droplet motion on curved surfaces after deposition/impact, necessitating methods to detect and alter drop placement to regulate final fluid distribution. This is a complicated problem incorporating estimation of surface geometry, surface chemistry, materials science, and estimation and control theory to regulate correct drop placement with a moving print head. This project requires innovative sensing and control strategies incorporating feedforward, feedback and adaptive control to address uncertainty in the surface measurement and models of the interactions between liquid and surface. Specifically, tools of information theory, nonlinear estimation, optimization, Lyapunov-based stability theory and geometric control will be used to establish a formal approach to conduct such printing with robot manipulators, along with understanding of liquid properties and surface chemistry.
这个学术与工业联络(GOALI)项目的资助机会将应用自适应控制的工程技术,以极大地扩展喷墨沉积的表面几何形状。喷墨沉积是一种有价值的技术,具有从伤口治疗到先进制造的潜在应用。然而,这种潜力目前受到喷墨沉积在平坦表面上印刷的实际限制的限制。这项研究将使新类别的技术,产品和服务。这项工作将通过德克萨斯大学达拉斯分校的研究人员和达拉斯地区组织MicroFab Technologies的专家之间的大学-行业合作伙伴关系完成。该团队将专注于两个实际应用:1)将定制的伤口治疗直接打印到癌症组织切除或创伤性损伤引起的伤口上,以及2)将标签打印到制造零件上以提高组装效率。研究成果将被整合到工程教育研讨会在UT达拉斯,以及在佩罗博物馆的自然和科学在市中心达拉斯的展览。有一个缺乏具体的知识,沉积/影响后,在曲面上的液滴运动,有必要的方法来检测和改变液滴的位置,以调节最终的流体分布。这是一个复杂的问题,结合表面几何形状,表面化学,材料科学,估计和控制理论,以调节正确的墨滴放置与移动打印头的估计。该项目需要创新的传感和控制策略,包括前馈,反馈和自适应控制,以解决表面测量和液体与表面之间的相互作用模型的不确定性。具体而言,信息理论,非线性估计,优化,基于李雅普诺夫的稳定性理论和几何控制的工具将被用来建立一个正式的方法来进行这样的印刷与机器人操纵器,沿着液体性质和表面化学的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Gans其他文献

Human-Robot Interactive System for Warehouses using Speech SLAM and Deep Learning-based Barcode Recognition
使用语音 SLAM 和基于深度学习的条码识别的仓库人机交互系统

Nicholas Gans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Gans', 18)}}的其他基金

Collaborative Research: CCRI: Planning: InfraStructure for Photorealistic Image and Environment Synthesis (I-SPIES)
合作研究:CCRI:规划:真实感图像和环境合成的基础设施 (I-SPIES)
  • 批准号:
    2120235
  • 财政年份:
    2021
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
Time-Invariant, Multi-Objective Extremum Seeking Control for Model-Free Auto-Tuning of Powered Prosthetic Legs
用于动力假肢无模型自动调节的时不变、多目标极值搜索控制
  • 批准号:
    2040335
  • 财政年份:
    2020
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
Time-Invariant, Multi-Objective Extremum Seeking Control for Model-Free Auto-Tuning of Powered Prosthetic Legs
用于动力假肢无模型自动调节的时不变、多目标极值搜索控制
  • 批准号:
    1728057
  • 财政年份:
    2017
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
GOALI: Adaptive Control of Inkjet Printing on 3D Curved Surfaces
GOALI:3D 曲面喷墨打印的自适应控制
  • 批准号:
    1563424
  • 财政年份:
    2016
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
EAGER: Advancing Adaptive Vibrational Control
EAGER:推进自适应振动控制
  • 批准号:
    2310300
  • 财政年份:
    2024
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
  • 批准号:
    2228092
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
CAREER: Learning and Leveraging Conventions in the Design of an Adaptive Haptic Shared Control for Steering a Semi-Automated Vehicle
职业:学习和利用设计用于驾驶半自动车辆的自适应触觉共享控制的惯例
  • 批准号:
    2238268
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
Travel: New Statistical Physics of Living Matter: non-equilibrium states under adaptive control
旅行:生命物质的新统计物理学:自适应控制下的非平衡态
  • 批准号:
    2326439
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
  • 批准号:
    2890822
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Studentship
i-PREDICT: Integrated adaPtive pRocEss DesIgn and ConTrol
i-PREDICT:集成自适应过程设计和控制
  • 批准号:
    EP/W035006/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Research Grant
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
  • 批准号:
    23K19982
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Atomic resolution imaging using quantum sensors enabled by smart adaptive control
使用智能自适应控制启用的量子传感器进行原子分辨率成像
  • 批准号:
    2890685
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Studentship
Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
  • 批准号:
    2230971
  • 财政年份:
    2023
  • 资助金额:
    $ 6.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了