Nonparametric Techniques for Analyzing Directional Structure in Space-Time Random Fields

分析时空随机场方向结构的非参数技术

基本信息

项目摘要

The analysis of directional structure in images and space-time data is crucial to many applications since one-dimensional patterns often correspond to important features such as object contours or trajectories. For example, Synthetic Aperture Radar (SAR) images are frequently analyzed for structures such as oceanic waves, hurricane rain bands, tsunamis, etc., which all exhibit locally unidirectional structure. Much of the existing work on orientation estimation treats deterministic data; on the other hand, much of the work on random fields has focused on the isotropic case. In this project, we propose to develop nonparametric techniques for analyzing directional structure in random images and space-time random fields. More specifically, our objectives in this proposal are:1. To build a test for spatial stationarity. This assumption is commonplace in the literature, yet there exist surprisingly few formal tests for it. 2. To build a test for unidirectional structure in images. As most random fields display unidirectionality only in some patches and only in certain frequency ranges, our tests will be localized in the spatial and wavenumber domains.3. To identify and extract unidirectional components from images that contain several highly directional components.4. To extend our results to multidimensional and space-time random fields. Such an extension must take into account the special structure of space-time fields by treating the temporal variable separately from the spatial variables.
分析图像和时空数据中的方向结构对许多应用至关重要,因为一维模式通常对应于物体轮廓或轨迹等重要特征。例如,合成孔径雷达(Synthetic Aperture Radar, SAR)图像经常被用于分析海浪、飓风雨带、海啸等结构,这些结构都表现为局部单向结构。许多现有的方向估计工作处理的是确定性数据;另一方面,关于随机场的大部分工作都集中在各向同性的情况下。在这个项目中,我们建议发展非参数技术来分析随机图像和时空随机场中的方向结构。更具体地说,我们在这项建议中的目标是:1。建立一个空间平稳性测试。这一假设在文献中很常见,但令人惊讶的是,很少有正式的测试。2. 建立对图像中单向结构的测试。由于大多数随机场仅在某些斑块和特定频率范围内显示单向性,因此我们的测试将定位在空间和波数域。从包含多个高度定向分量的图像中识别和提取单向分量。将我们的结果扩展到多维和时空随机场。这种扩展必须考虑到时空场的特殊结构,将时间变量与空间变量分开处理。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting Directionality in Random Fields Using the Monogenic Signal
  • DOI:
    10.1109/tit.2014.2342734
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    S. Olhede;D. Ramírez;P. Schreier
  • 通讯作者:
    S. Olhede;D. Ramírez;P. Schreier
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Peter Schreier, Ph.D.其他文献

Professor Peter Schreier, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Peter Schreier, Ph.D.', 18)}}的其他基金

Robustly Identifying Dependent Components in Multiple High-Dimensional Data Sets Based on Few Observations
基于少量观察稳健地识别多个高维数据集中的相关组件
  • 批准号:
    262301625
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Analyzing how somatic mutation processes vary across healthy and cancerous human tissues using machine learning techniques
使用机器学习技术分析健康和癌性人体组织的体细胞突变过程如何变化
  • 批准号:
    569255-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
New techniques for analyzing the long-term behavior of intracellular networks
分析细胞内网络长期行为的新技术
  • 批准号:
    2052455
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Cell biological study for the distribution and dynamic of lipid in the biological membrane with nano-scale analyzing techniques
利用纳米级分析技术对生物膜中脂质的分布和动态进行细胞生物学研究
  • 批准号:
    20H03154
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simplifying and analyzing whisky production techniques
简化和分析威士忌生产技术
  • 批准号:
    534023-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
Analyzing the chemistry of 'Modern Coffee' roasting techniques
分析“现代咖啡”烘焙技术的化学成分
  • 批准号:
    515257-2017
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
Partial discharge source classification based on analyzing pd pulse waveforms using statistical pattern recognition techniques
基于使用统计模式识别技术分析局部放电脉冲波形的局部放电源分类
  • 批准号:
    499895-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
Comprehensive training in computational biology techniques for analyzing second- and third- generation sequencing data
用于分析第二代和第三代测序数据的计算生物学技术的综合培训
  • 批准号:
    BB/N019636/1
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Development of techniques for analyzing somatic mutations in single neurons of psychiatric disorders
分析精神疾病单个神经元体细胞突变的技术的发展
  • 批准号:
    15K15424
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Capturing and analyzing data from SensorSuite's sevices using big data analytics techniques
使用大数据分析技术从 SensorSuite 服务捕获和分析数据
  • 批准号:
    477440-2014
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
Analyzing ground vibration for drill and blast tunnelling operations in urban settings using numerical modelling techniques
使用数值建模技术分析城市环境中钻爆隧道作业的地面振动
  • 批准号:
    462017-2013
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Industrial Postgraduate Scholarships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了