Collaborative Research: Understanding Subatomic-Scale Quantum Matter Data Using Machine Learning Tools

协作研究:使用机器学习工具理解亚原子尺度的量子物质数据

基本信息

  • 批准号:
    1934714
  • 负责人:
  • 金额:
    $ 121.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

A central goal of modern quantum physics is to search for new systems and technological paradigms that utilize quantum mechanical aspects of matter rather than being limited by them. In particular, there is an active search for new materials that exhibit surprising physical properties because of strong interaction between individual electrons that leads to strong correlations in the motion of electrons and as a result, to strongly correlated quantum matter. The study of Strongly Correlated Quantum Matter (SCQM) has reached a tipping point through intense efforts over the last decade that have led to vast quantities of experimental data. The next breakthrough in the field will come from relating these experimental data to theoretical models using tools of data science. However, data-driven challenges in SCQM require a fundamentally new data science approaches for two reasons: first, quantum mechanical imaging is probabilistic; and second, inference from data should be subject to fundamental laws of physics. Hence the new data-driven challenges in the field of SCQM requires "Growing Convergent Research" and "Harnessing the Data Revolution", two of NSF's Ten Big Ideas. The objective of the project is to develop and disseminate machine learning (ML) tools that can serve as a two-way highway connecting the data revolution in SCQM experiments at sub-atomic scale to a fundamental theoretical understanding of SCQM. The specific goals are: (1) Develop interpretable ML tools for position space image data; (2) Develop unsupervised ML tools for momentum space scattering data; (3) Design new imaging modality guided by the insight gained from ML; and (4) Integrate ML tools with in-operando human interface to the Cornell High Energy Synchrotron Source (CHESS) beamline. Goals (1) and (2) are within reach, while (3) and (4) are more ambitious visions for scaling up to a future institute that can involve more academic institutions and scattering experiment facilities nationwide. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代量子物理学的中心目标是寻找利用物质的量子力学方面而不是受其限制的新系统和技术范式。特别是,由于单个电子之间的强相互作用导致电子运动中的强相关性,从而导致强相关量子物质,因此正在积极寻找表现出惊人物理特性的新材料。强相关量子物质(SCQM)的研究已经达到了一个临界点,在过去的十年中,通过激烈的努力,导致了大量的实验数据。该领域的下一个突破将来自使用数据科学工具将这些实验数据与理论模型联系起来。然而,SCQM中数据驱动的挑战需要一种全新的数据科学方法,原因有两个:首先,量子力学成像是概率性的;其次,从数据中推断应该服从基本的物理定律。因此,SCQM领域的新数据驱动挑战需要“不断增长的融合研究”和“利用数据革命”,这是NSF十大理念中的两个。该项目的目标是开发和传播机器学习(ML)工具,这些工具可以作为连接亚原子尺度SCQM实验中的数据革命和对SCQM的基本理论理解的双向高速公路。具体目标是:(1)为位置空间图像数据开发可解释的ML工具;(2)开发动量空间散射数据的无监督ML工具;(3)在机器学习的指导下设计新的成像模式;(4)将机器学习工具与运行中的人机界面集成到康奈尔高能同步加速器源(CHESS)光束线上。目标(1)和(2)是可以实现的,而(3)和(4)是更雄心勃勃的愿景,即扩大规模,成为一个未来的研究所,可以涉及更多的学术机构,并在全国范围内分散实验设施。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dangers of Bayesian Model Averaging under Covariate Shift
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pavel Izmailov;Patrick K. Nicholson;Sanae Lotfi;A. Wilson
  • 通讯作者:
    Pavel Izmailov;Patrick K. Nicholson;Sanae Lotfi;A. Wilson
Machine learning discovery of new phases in programmable quantum simulator snapshots
  • DOI:
    10.1103/physrevresearch.5.013026
  • 发表时间:
    2023-01-19
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Miles, Cole;Samajdar, Rhine;Kim, Eun-Ah
  • 通讯作者:
    Kim, Eun-Ah
Quantum Phases of Transition Metal Dichalcogenide Moiré Systems
过渡金属二硫属化物莫尔系统的量子相
  • DOI:
    10.1103/physrevlett.128.157602
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Zhou, Yiqing;Sheng, D. N.;Kim, Eun-Ah
  • 通讯作者:
    Kim, Eun-Ah
Hamiltonian reconstruction as metric for variational studies
  • DOI:
    10.21468/scipostphys.13.3.063
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Kevin Zhang;S. Lederer;Kenny Choo;T. Neupert;Giuseppe Carleo;Eun-Ah Kim
  • 通讯作者:
    Kevin Zhang;S. Lederer;Kenny Choo;T. Neupert;Giuseppe Carleo;Eun-Ah Kim
Strange Metals from Melting Correlated Insulators in Twisted Bilayer Graphene
扭曲双层石墨烯中相关绝缘体熔化产生的奇怪金属
  • DOI:
    10.1103/physrevlett.127.266601
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Cha, Peter;Patel, Aavishkar A.;Kim, Eun-Ah
  • 通讯作者:
    Kim, Eun-Ah
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eun-Ah Kim其他文献

Bionic fractionalization in the trimer model of twisted bilayer graphene
  • DOI:
    10.1038/s43246-025-00849-5
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Kevin Zhang;Dan Mao;Eun-Ah Kim;Roderich Moessner
  • 通讯作者:
    Roderich Moessner
Effective preconcentration of volatile organic compounds from aqueous solutions with polydimethylsiloxane-coated filter paper
  • DOI:
    10.1016/j.microc.2018.12.010
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eun-Ah Kim;You Young Lim
  • 通讯作者:
    You Young Lim
Realizing string-net condensation: Fibonacci anyon braiding for universal gates and sampling chromatic polynomials
实现弦网凝聚:用于通用门和采样色多项式的斐波那契任意子编织
  • DOI:
    10.1038/s41467-025-61493-8
  • 发表时间:
    2025-07-06
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Zlatko K. Minev;Khadijeh Najafi;Swarnadeep Majumder;Juven Wang;Ady Stern;Eun-Ah Kim;Chao-Ming Jian;Guanyu Zhu
  • 通讯作者:
    Guanyu Zhu

Eun-Ah Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eun-Ah Kim', 18)}}的其他基金

Quantum Integration of Data and Emergence at Atomic Scales (Qu-IDEAS)
原子尺度数据的量子整合和出现 (Qu-IDEAS)
  • 批准号:
    2118310
  • 财政年份:
    2022
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Standard Grant
CAREER: Interplay Between Superconductivity, Quantum Liquid Crystals and Topological Phases
职业:超导性、量子液晶和拓扑相之间的相互作用
  • 批准号:
    0955822
  • 财政年份:
    2010
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 121.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了