Nonlinear Dynamical Interactions in Multistable Metastructures
多稳态超结构中的非线性动力学相互作用
基本信息
- 批准号:1935137
- 负责人:
- 金额:$ 30.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will support fundamental research uncovering new dynamic behaviors in structures, which will promote both the progress of science and technological advance in the field of materials and structures. Metamaterials are engineered systems that exhibit properties not commonly found in conventional materials, which can enhance the control of sound, vibrations and mechanical waves beyond what current technology can produce. Despite recent progress in metamaterial research, fundamental performance limits exist; the effective working frequencies are too high and narrow for many useful structural applications. This project supports fundamental investigations into new dynamical interactions addressing these operational limitations, thereby accelerating the implementation of metamaterials into structural applications. Specifically, the derived theory will yield a new class of dynamical interactions allowing the manipulation of low frequency vibrations, relevant for applications in civil, aerospace, automotive and medical industries, such as constructing resilient infrastructure, vibration attenuation and providing local power to the internet of things. The uncovered new physics and potential applications will positively impact the U.S. technological and scientific edge, ultimately benefiting its economy and society. This research involves multiple disciplines including engineering, physics and applied mathematics, which will allow for leveraging the obtained results to promote Science, Technology, Engineering, and Mathematics education. Furthermore, the educational activities will support the participation of underrepresented groups in research, contributing to broadening diversity in engineering education.Metamaterials exhibit effective, unconventional properties by engineering unit cells at the micrometer or millimeter scales. However, these properties are strongly dependent on the size of the unit cells, restricting the effective behavior to narrow, high frequency bands or resulting in large arrangements. Thus, there is a need to discover mechanisms allowing to obtain unit-cell size independent, broadband metamaterials. This research investigates a mechanism enabling low frequency, broadband behavior exploiting new types of nonlinear interactions involving transition waves in multistable metastructures. Concretely, this effort will establish physics-based models capturing the excitation of metastructural vibration modes by transition waves, and vice versa. Theoretical and numerical analyses will reveal the dynamical regimes and metastructures' parameters for which such interactions occur. Experiments are planned using 3D-printed multistable metastructures to validate the key physics of such nonlinear interactions. These activities will test the hypothesis stating that transition waves allow for low frequency, broadband dynamical behavior enabling unconventional manipulation of vibrations in structural applications. The overall outcome is a mathematical framework for designing and analyzing metastructural nonlinear interactions, thereby enabling the implementation of metamaterials in structural applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将支持揭示结构中新的动力学行为的基础研究,这将促进材料和结构领域的科学进步和技术进步。超材料是一种工程系统,具有传统材料中不常见的特性,可以增强对声音、振动和机械波的控制,超出当前技术的能力。尽管超材料研究取得了最新进展,但基本性能限制仍然存在;对于许多有用的结构应用来说,有效工作频率太高且太窄。该项目支持对解决这些操作限制的新动力相互作用的基础研究,从而加速将超材料应用于结构应用。具体而言,衍生理论将产生一类新的动态相互作用,允许操纵低频振动,与民用,航空航天,汽车和医疗行业的应用相关,例如构建弹性基础设施,振动衰减和为物联网提供本地电源。这些发现的新物理和潜在应用将对美国的技术和科学优势产生积极影响,最终使其经济和社会受益。这项研究涉及多个学科,包括工程,物理和应用数学,这将允许利用所获得的结果,以促进科学,技术,工程和数学教育。此外,教育活动将支持代表性不足的群体参与研究,有助于扩大工程教育的多样性。超材料通过在微米或毫米尺度上设计单位单元而表现出有效的非常规特性。然而,这些性质强烈地依赖于晶胞的尺寸,将有效行为限制在窄的高频带或导致大的布置。因此,需要发现允许获得与晶胞尺寸无关的宽带超材料的机制。本研究探讨了一种机制,使低频,宽带行为利用新类型的非线性相互作用,涉及过渡波在多稳态亚结构。具体地说,这项工作将建立基于物理的模型,捕捉过渡波激发的亚结构振动模式,反之亦然。理论和数值分析将揭示这种相互作用发生的动力学机制和亚结构参数。实验计划使用3D打印的多稳态亚结构来验证这种非线性相互作用的关键物理。这些活动将测试的假设,过渡波允许低频,宽带动力学行为,使非传统的操纵振动的结构应用。总体成果是一个设计和分析亚结构非线性相互作用的数学框架,从而使超材料在结构应用中的实施成为可能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-performance large-scale simulation of multi-stable metastructures
- DOI:10.1016/j.cpc.2022.108365
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Myungwon Hwang;C. Scalo;A. F. Arrieta
- 通讯作者:Myungwon Hwang;C. Scalo;A. F. Arrieta
Extreme Frequency Conversion from Soliton Resonant Interactions
孤子谐振相互作用的极端频率转换
- DOI:10.1103/physrevlett.126.073902
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Hwang, Myungwon;Arrieta, Andres F.
- 通讯作者:Arrieta, Andres F.
Topological wave energy harvesting in bistable lattices
双稳态晶格中的拓扑波能收集
- DOI:10.1088/1361-665x/ac37ff
- 发表时间:2021
- 期刊:
- 影响因子:4.1
- 作者:Hwang, Myungwon;Arrieta, Andres F
- 通讯作者:Arrieta, Andres F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andres Arrieta其他文献
Andres Arrieta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andres Arrieta', 18)}}的其他基金
CAREER: The Mechanics of Hierachically Multistable Metastructures
职业:分层多稳态元结构的力学
- 批准号:
1944597 - 财政年份:2020
- 资助金额:
$ 30.97万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Dynamical Mechanisms for Midlatitude-Arctic Interactions and Associated Weather Extremes in a Warming Climate
合作研究:气候变暖中中纬度-北极相互作用及相关极端天气的动力机制
- 批准号:
2232582 - 财政年份:2023
- 资助金额:
$ 30.97万 - 项目类别:
Standard Grant
Collaborative Research: Dynamical Mechanisms for Midlatitude-Arctic Interactions and Associated Weather Extremes in a Warming Climate
合作研究:气候变暖中中纬度-北极相互作用及相关极端天气的动力机制
- 批准号:
2232581 - 财政年份:2023
- 资助金额:
$ 30.97万 - 项目类别:
Standard Grant
New approaches to quantifying global ecosystems including dynamical human interactions
量化全球生态系统(包括动态人类互动)的新方法
- 批准号:
RGPIN-2020-04889 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别:
Discovery Grants Program - Individual
Interactions between number theory and complex dynamical systems
数论与复杂动力系统之间的相互作用
- 批准号:
RGPIN-2017-05656 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别:
Discovery Grants Program - Individual
CRCNS Research Proposal: Network models of cortical and subcortical interactions for dynamical control of decision making
CRCNS 研究提案:用于决策动态控制的皮质和皮质下相互作用的网络模型
- 批准号:
2207895 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别:
Continuing Grant
New approaches to quantifying global ecosystems including dynamical human interactions
量化全球生态系统(包括动态人类互动)的新方法
- 批准号:
RGPIN-2020-04889 - 财政年份:2021
- 资助金额:
$ 30.97万 - 项目类别:
Discovery Grants Program - Individual
Interactions between number theory and complex dynamical systems
数论与复杂动力系统之间的相互作用
- 批准号:
RGPIN-2017-05656 - 财政年份:2021
- 资助金额:
$ 30.97万 - 项目类别:
Discovery Grants Program - Individual
Interactions between number theory and complex dynamical systems
数论与复杂动力系统之间的相互作用
- 批准号:
RGPIN-2017-05656 - 财政年份:2020
- 资助金额:
$ 30.97万 - 项目类别:
Discovery Grants Program - Individual
A dynamical systems 'basis' for vortex interactions via differentiable programming and machine learning
通过可微分编程和机器学习实现涡旋相互作用的动力系统“基础”
- 批准号:
2435641 - 财政年份:2020
- 资助金额:
$ 30.97万 - 项目类别:
Studentship
New approaches to quantifying global ecosystems including dynamical human interactions
量化全球生态系统(包括动态人类互动)的新方法
- 批准号:
RGPIN-2020-04889 - 财政年份:2020
- 资助金额:
$ 30.97万 - 项目类别:
Discovery Grants Program - Individual