EAGER: Collaborative Research: Hybrid Quantum Dot-Metal Nanocrystals for Photoreduction of CO2: Synthesis, Spectroscopy and Catalysis

EAGER:合作研究:用于二氧化碳光还原的混合量子点金属纳米晶体:合成、光谱学和催化

基本信息

  • 批准号:
    1936228
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Efficient, sustainable, and cost-effective reaction of combustion-generated carbon dioxide to fuels and chemicals remains one of the leading technical challenges of our times. Among sustainable technologies, the direct conversion of solar energy to chemical energy, as accelerated by catalytic materials, is one of the most attractive options, but is limited by the efficiency of the solar-to-chemical energy conversion. The project will investigate a new combination of catalytic materials, and methods for structuring those materials, that has potential to further increase both the rate and efficiency of solar-driven carbon dioxide reactions. The study also utilizes an ultrafast spectroscopic technique that may shed new light on the energy conversion process - knowledge that can be extended to a wide range of applications beyond photocatalysis. The project will generate insight that supports technologies critical to our nation's future energy security while decreasing carbon emissions.Energy sustainability and environmental protection has created an urgent need to develop new methods that efficiently, selectively, and sustainably convert carbon dioxide (CO2) into valuable chemicals and fuels. Among existing technologies, solar-driven photoreduction and transformation of CO2 into carbon-based fuels represents an attractive method due to its sustainability and its minimal environmental impact. High-performance photocatalysts are the key to achieving effective CO2 photoreduction. The collaborative project will perform proof-of-principle studies of novel nanocatalysts for solar-driven CO2 photoreduction based on hybrids of semiconductor core@shell quantum dots (QDs, e.g., CdSe@CdS) and gold (Au) nanoparticles (NPs). CdSe@CdS core-shell QDs can efficiently capture solar energy in the entire ultraviolet and most of the visible spectral range due to their low bandgap of 1.9 eV as well as having a highly reductive conduction band. Meanwhile, Au NPs show high CO2 binding affinity and excellent reaction selectivity (e.g., CO2 to CO). Coupling CdSe@CdS semiconductor QDs with Au NPs through direct epitaxial growth has the potential to greatly improve the overall conversion efficiency of solar energy to chemical fuels. To this end, the project will explore new synthetic methods towards synthesizing QD-metal hybrid nanomaterials with precise control over size, shape, geometry, and lattice strain. The unique HNC structures make it possible to efficiently transfer multiple electrons as quantitatively detected by ultrafast transient absorption spectroscopy, thereby providing fundamental understanding of the relationships between structural parameters and charge separation/transfer processes between the QDs and Au, as well as photocatalytic performance of QD-Au. Beyond the technical aspects of the project, the investigators will collaborate in organizing annual events such as workshops and outreach days featuring nanoscience and clean energy at both universities. The outreach activities will be designed to stimulate the interests of students from high schools in pursing STEM-related higher education. In addition, scientific symposia will be organized with the goal of highlighting research opportunities related to photocatalytic CO2 reduction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如何将燃烧产生的二氧化碳高效、可持续且具有成本效益地转化为燃料和化学品仍然是我们这个时代面临的主要技术挑战之一。 在可持续技术中,通过催化材料加速将太阳能直接转化为化学能是最有吸引力的选择之一,但受到太阳能-化学能转化效率的限制。 该项目将研究催化材料的新组合,以及构建这些材料的方法,这有可能进一步提高太阳能驱动的二氧化碳反应的速率和效率。 该研究还利用了一种超快光谱技术,可能会对能量转换过程产生新的影响-这些知识可以扩展到超越太阳能的广泛应用。 该项目将产生深入的见解,支持对我们国家未来能源安全至关重要的技术,同时减少碳排放。能源可持续性和环境保护迫切需要开发新方法,有效地,选择性地和可持续地将二氧化碳(CO2)转化为有价值的化学品和燃料。 在现有技术中,太阳能驱动的光还原和将二氧化碳转化为碳基燃料是一种有吸引力的方法,因为它具有可持续性和对环境的影响最小。高性能的光催化剂是实现有效CO2光还原的关键。该合作项目将对基于半导体核@壳量子点(QD,例如,CdSe@CdS)和金(Au)纳米颗粒(NP)。 CdSe@CdS核壳量子点由于其1.9eV的低带隙以及具有高度还原性的导带,可以在整个紫外和大部分可见光谱范围内有效地捕获太阳能。同时,Au NP显示出高的CO2结合亲和力和优异的反应选择性(例如,二氧化碳(CO)。 通过直接外延生长将CdSe@CdS半导体QD与Au NP耦合具有极大地提高太阳能到化学燃料的整体转换效率的潜力。 为此,该项目将探索新的合成方法,以合成精确控制尺寸,形状,几何形状和晶格应变的QD-金属混合纳米材料。 独特的HNC结构使得可以有效地转移多个电子,如通过超快瞬态吸收光谱定量检测的,从而提供对结构参数与量子点和Au之间的电荷分离/转移过程之间的关系以及QD-Au的光催化性能的基本理解。 除了该项目的技术方面,研究人员还将合作组织年度活动,如在两所大学举办以纳米科学和清洁能源为主题的研讨会和外联日。外展活动旨在激发高中学生追求STEM相关高等教育的兴趣。 此外,还将组织科学研讨会,旨在突出与光催化二氧化碳减排相关的研究机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crystalline Mesoporous Complex Oxides: Porosity‐Controlled Electromagnetic Response
  • DOI:
    10.1002/adfm.201909491
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Lei Jin;Xingsong Su;Jianhang Shi;Kuo-Chih Shih;Daniel Cintron;Tong Cai;M. Nieh;Ou Chen;S. Suib;Menka Jain;Jie He
  • 通讯作者:
    Lei Jin;Xingsong Su;Jianhang Shi;Kuo-Chih Shih;Daniel Cintron;Tong Cai;M. Nieh;Ou Chen;S. Suib;Menka Jain;Jie He
Do polymer ligands block the catalysis of metal nanoparticles? Unexpected importance of binding motifs in improving catalytic activity
  • DOI:
    10.1039/d0ta03906c
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Zhang;Zichao Wei;Michael Meng;G. Ung;Jie He
  • 通讯作者:
    Lei Zhang;Zichao Wei;Michael Meng;G. Ung;Jie He
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie He其他文献

Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light
Cu2O/BiVO4异质结构:可见光下同步光催化氧化有机染料和还原Cr(VI)的合成及其应用
  • DOI:
    10.1016/j.cej.2014.06.031
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Qing Yuan;Lang Chen;Miao Xiong;Jie He;Sheng-Lian Luo;Chak-Tong Au;Shuang-Feng Yin
  • 通讯作者:
    Shuang-Feng Yin
The screening value of mammography for breast cancer : an overview of 22 systematic reviews with evidence mapping (Preprint)
乳房 X 光检查对乳腺癌的筛查价值:22 项系统评价与证据图谱概述(预印本)
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiyuan Shi;Jiang Li;Lili Zhang;Ya Gao;Yamin Chen;Liang Zhao;Yi;Wanqing Chen;Jinhui Tian;Ni Li;Jie He
  • 通讯作者:
    Jie He
Shape-based reconstruction for transrectal diffuse optical tomography monitoring of photothermal focal therapy of prostate cancer: simulation studies
基于形状的重建用于前列腺癌光热局部治疗的经直肠扩散光学断层扫描监测:模拟研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Weersink;Sahil Chaudhary;Kenwrick Mayo;Jie He;B. Wilson
  • 通讯作者:
    B. Wilson
Synthesis and photoluminescence properties of Y1-x(P0.6V0.4)O4:xEu3+ red-emitting phosphors
Y1-x(P0.6V0.4)O4:xEu3红光荧光粉的合成及光致发光性能
Base Metal-Controlled Chemodivergent Cyclization of Propargylamines for the Atom-Economic Synthesis of Nitrogen Heterocycles.
贱金属控制的炔丙胺化学发散环化用于氮杂环的原子经济合成。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Hui Zhang;You Zi;Chenhui Cao;Weichun Huang;Aiwei Jiang;Chaowu Lu;Jie He;Yanfeng Tang;Zheng
  • 通讯作者:
    Zheng

Jie He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie He', 18)}}的其他基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Carbene-Containing Ligands on Cu and Cu3N Nanocubes: Access to Stable and Selective Electrolysis for CO2 Reduction
合作研究:CAS:Cu 和 Cu3N 纳米立方体上的含卡宾配体:获得稳定和选择性电解以还原 CO2
  • 批准号:
    2102245
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Hydrological Sensitivity Across Timescales
职业:不同时间尺度的水文敏感性
  • 批准号:
    2047270
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SusChEM: C-H Bond Electroactivation of Nonpolar Organic Substrates in Water: Enzyme-Mediated Reaction Pathways in Microemulsions
SusChEM:水中非极性有机底物的 C-H 键电活化:微乳液中酶介导的反应途径
  • 批准号:
    2035669
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Solar-Driven Hydrogenation of CO2 using Hierarchically Porous TiO2 with Spatially Isolated Au and Pt Nanoparticles
合作研究:利用分级多孔 TiO2 与空间隔离的 Au 和 Pt 纳米粒子进行太阳能驱动的 CO2 氢化
  • 批准号:
    1705566
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了