FAI: Addressing the 3D Challenges for Data-Driven Fairness: Deficiency, Dynamics, and Disagreement
FAI:应对数据驱动公平性的 3D 挑战:缺陷、动态和分歧
基本信息
- 批准号:1939743
- 负责人:
- 金额:$ 61.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data-driven decision making systems are increasingly used to guide important decisions ranging from loan approvals to school admissions to prison sentencing guidelines. Existing methods for providing these decisions are often exclusively designed to maximize a single criterion (e.g., accuracy, utility). For socially-impactful applications, such an approach ignores most of the other important decision considerations. Moreover, most of the current methods assume that decisions are made once or are independent of previous similar decisions, that all the information necessary for the decision is available, and that a single criterion of fairness can characterize the decision. Not surprisingly, these assumptions do not hold in the real world. This project investigates education, public health, and urban revitalization decision-making applications in the City of Chicago, as well as environmental policy applications in collaboration with Wild Me, an AI for conservation non-profit. The project aims to develop a fair machine learning approach that takes into account deficiency of information, dynamic decision making, and disagreement about a single fairness criterion. This project aims to develop a fair machine learning approach based on robust estimation to address three forms of complexity common in application domains: deficiency of information, dynamic decisions, and disagreement about a single fairness criterion. It approaches information deficiency by generalizing the notion of proxies and learning latent group membership structure as a transfer learning task. It flexibly extends the notion of fairness to dynamic settings with repeated interactions by defining it over states of the individuals rather than decision maker actions. Finally, it addresses fairness disagreements by rationalizing the fairness criteria of observed decisions and balancing different criteria.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的决策系统越来越多地用于指导重要决策,从贷款审批到学校招生再到监狱量刑指南。用于提供这些决策的现有方法通常被专门设计为最大化单个标准(例如,准确性、实用性)。对于具有社会影响力的应用程序,这种方法忽略了大多数其他重要的决策考虑因素。 此外,目前的大多数方法都假设决策是一次性做出的,或者独立于以前的类似决策,决策所需的所有信息都是可用的,并且可以用一个公平的标准来描述决策。毫不奇怪,这些假设在真实的世界中并不成立。该项目调查了芝加哥市的教育,公共卫生和城市振兴决策应用,以及与Wild Me合作的环境政策应用,Wild Me是一个保护非营利的人工智能。该项目旨在开发一种公平的机器学习方法,该方法考虑到信息不足,动态决策以及对单一公平标准的分歧。 该项目旨在开发一种基于鲁棒估计的公平机器学习方法,以解决应用领域中常见的三种形式的复杂性:信息不足,动态决策和对单一公平标准的分歧。它通过推广代理的概念和学习潜在的群体成员结构作为一个迁移学习任务来解决信息不足问题。它灵活地将公平的概念扩展到具有重复交互的动态设置中,通过将其定义为个体的状态而不是决策者的行为。最后,它通过合理化观察决策的公平标准和平衡不同标准来解决公平性分歧。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalizing Group Fairness in Machine Learning via Utilities
通过实用程序推广机器学习中的群体公平性
- DOI:10.1613/jair.1.14238
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:Blandin, Jack;Kash, Ian A.
- 通讯作者:Kash, Ian A.
Fairness Auditing in Urban Decisions using LP-based Data Combination
使用基于 LP 的数据组合进行城市决策的公平性审计
- DOI:10.1145/3593013.3594118
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yang, Jingyi;Miller, Joel;Ohannessian, Mesrob
- 通讯作者:Ohannessian, Mesrob
Fairness for Robust Learning to Rank
稳健排名学习的公平性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Memarrast, O.
- 通讯作者:Memarrast, O.
Superhuman Fairness
超人的公平
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Memarrast, Omid;Vu, Linh;Ziebart, Brian D.
- 通讯作者:Ziebart, Brian D.
Towards Uniformly Superhuman Autonomy via Subdominance Minimization
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Brian D. Ziebart;Sanjiban Choudhury;Xinyan Yan;Paul Vernaza
- 通讯作者:Brian D. Ziebart;Sanjiban Choudhury;Xinyan Yan;Paul Vernaza
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Ziebart其他文献
Brian Ziebart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Ziebart', 18)}}的其他基金
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 61.5万 - 项目类别:
Standard Grant
SCH: INT: The Virtual Assistant Health Coach: Learning to Autonomously Improve Health Behaviors
SCH:INT:虚拟助理健康教练:学习自主改善健康行为
- 批准号:
1838770 - 财政年份:2018
- 资助金额:
$ 61.5万 - 项目类别:
Standard Grant
CAREER: Adversarial Machine Learning for Structured Prediction
职业:用于结构化预测的对抗性机器学习
- 批准号:
1652530 - 财政年份:2017
- 资助金额:
$ 61.5万 - 项目类别:
Continuing Grant
EAGER: The Virtual Assistant Health Coach: Summarization and Assessment of Goal-Setting Dialogues
EAGER:虚拟助理健康教练:目标设定对话的总结和评估
- 批准号:
1650900 - 财政年份:2016
- 资助金额:
$ 61.5万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Computational Tools for Extracting Individual, Dyadic, and Network Behavior from Remotely Sensed Data
III:媒介:协作研究:从遥感数据中提取个体、二元和网络行为的计算工具
- 批准号:
1514126 - 财政年份:2015
- 资助金额:
$ 61.5万 - 项目类别:
Standard Grant
RI: Small: Robust Optimization of Loss Functions with Application to Active Learning
RI:小:损失函数的鲁棒优化及其在主动学习中的应用
- 批准号:
1526379 - 财政年份:2015
- 资助金额:
$ 61.5万 - 项目类别:
Standard Grant
相似国自然基金
Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
EU-Funded
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Research Grant
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
EP/Y023250/1 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Fellowship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
- 批准号:
NE/X014975/1 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Research Grant
A study of in-school in-service training for HRTs and senka teachers, addressing teacher training needs.
针对 HRT 和 Senka 教师的校内在职培训研究,解决教师培训需求。
- 批准号:
24K04150 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
S-STEM: Addressing Disparities in STEM Educational Access and Outcomes among Low-Income Students
S-STEM:解决低收入学生在 STEM 教育机会和成果方面的差异
- 批准号:
2322771 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Continuing Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/Y00390X/1 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Fellowship
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336368 - 财政年份:2024
- 资助金额:
$ 61.5万 - 项目类别:
Standard Grant














{{item.name}}会员




