CAREER: Adversarial Machine Learning for Structured Prediction

职业:用于结构化预测的对抗性机器学习

基本信息

  • 批准号:
    1652530
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Many important inductive reasoning problems, ranging from understanding text and images to enabling desirable robotic behavior, are structured prediction tasks. These tasks require the joint prediction of many related variables rather than independent predictions for individual variables. For example, an autonomous vehicle's lane change decisions may depend on its position and velocity estimates for nearby vehicles, its assessment of road conditions, its localization and identification of other potential obstacles on the roadway, and so on. The goal of this NSF CAREER award project is to develop safer and more beneficial structured prediction methods. Anticipated improvements have the potential for broader impact in application areas with critical performance measures, such as healthcare and autonomous vehicle safety. This project fosters these potentials by creating multidisciplinary curriculum in data science and releasing general purpose adversarial structured prediction tools that will expose machine learning techniques to a wider audience. Additionally, the project seeks to involve undergraduates in research activities at the University of Illinois at Chicago, which is an urban institution serving a diverse student population.The approach pursued in this project is to perform structured prediction by making worst-case assumptions when reasoning about uncertainty. The main technical objectives of this project within the proposed adversarial structured prediction formulation are to:(1) Provide stronger theoretical guarantees (e.g., Fisher consistency, tighter generalization bounds) than existing performance measure approximation methods;(2) Develop scalable algorithms for solving large adversarial structured prediction problems for a range of structures and performance measures;(3) Enable safer structured prediction when learning from training data that is generated from a different distribution than the testing data distribution; and (4) Demonstrate the developed methods on a diverse range of tasks from natural language processing, inverse optimal control, and computer vision.
许多重要的归纳推理问题,从理解文本和图像到实现理想的机器人行为,都是结构化预测任务。这些任务需要对许多相关变量进行联合预测,而不是对单个变量进行独立预测。例如,自动驾驶汽车的变道决策可能取决于其对附近车辆的位置和速度估计、其对道路状况的评估、其对道路上其他潜在障碍物的定位和识别等。这个NSF CAREER奖项目的目标是开发更安全和更有益的结构化预测方法。预期的改进有可能在具有关键性能指标的应用领域产生更广泛的影响,例如医疗保健和自动驾驶汽车安全。该项目通过创建数据科学的多学科课程并发布通用对抗性结构化预测工具来培养这些潜力,这些工具将向更广泛的受众展示机器学习技术。此外,在面向多样化学生群体的伊利诺伊大学芝加哥分校,本项目以本科生为对象,通过对不确定性进行推理时的最坏假设,进行结构化预测。在所提出的对抗性结构化预测公式中,该项目的主要技术目标是:(1)提供更强的理论保证(例如,Fisher一致性,更严格的泛化边界)比现有的性能度量近似方法;(2)开发可扩展的算法,用于解决一系列结构和性能度量的大型对抗性结构化预测问题;(3)当从与测试数据分布不同的分布生成的训练数据中学习时,能够实现更安全的结构化预测;以及(4)在自然语言处理、逆最优控制和计算机视觉等各种任务上演示所开发的方法。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adversarial Learning for 3D Matching
3D 匹配的对抗性学习
Towards Uniformly Superhuman Autonomy via Subdominance Minimization
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian D. Ziebart;Sanjiban Choudhury;Xinyan Yan;Paul Vernaza
  • 通讯作者:
    Brian D. Ziebart;Sanjiban Choudhury;Xinyan Yan;Paul Vernaza
Moment Distributionally Robust Tree Structured Prediction
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeshu Li;D. Saeed;Xinhua Zhang;Brian D. Ziebart;Kevin Gimpel
  • 通讯作者:
    Yeshu Li;D. Saeed;Xinhua Zhang;Brian D. Ziebart;Kevin Gimpel
Policy-Conditioned Uncertainty Sets for Robust Markov Decision Processes
鲁棒马尔可夫决策过程的政策条件不确定性集
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tirinzoni, Andrea;Petrik, Marek;Chen, Xiangli;Ziebart, Brian D
  • 通讯作者:
    Ziebart, Brian D
Distributionally Robust Graphical Models
  • DOI:
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rizal Fathony;Ashkan Rezaei;Mohammad Ali Bashiri;Xinhua Zhang;Brian D. Ziebart
  • 通讯作者:
    Rizal Fathony;Ashkan Rezaei;Mohammad Ali Bashiri;Xinhua Zhang;Brian D. Ziebart
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Ziebart其他文献

Brian Ziebart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Ziebart', 18)}}的其他基金

Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FAI: Addressing the 3D Challenges for Data-Driven Fairness: Deficiency, Dynamics, and Disagreement
FAI:应对数据驱动公平性的 3D 挑战:缺陷、动态和分歧
  • 批准号:
    1939743
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SCH: INT: The Virtual Assistant Health Coach: Learning to Autonomously Improve Health Behaviors
SCH:INT:虚拟助理健康教练:学习自主改善健康行为
  • 批准号:
    1838770
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: The Virtual Assistant Health Coach: Summarization and Assessment of Goal-Setting Dialogues
EAGER:虚拟助理健康教练:目标设定对话的总结和评估
  • 批准号:
    1650900
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Computational Tools for Extracting Individual, Dyadic, and Network Behavior from Remotely Sensed Data
III:媒介:协作研究:从遥感数据中提取个体、二元和网络行为的计算工具
  • 批准号:
    1514126
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Small: Robust Optimization of Loss Functions with Application to Active Learning
RI:小:损失函数的鲁棒优化及其在主动学习中的应用
  • 批准号:
    1526379
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Robust Defences against Adversarial Machine Learning for UAV Systems
针对无人机系统对抗性机器学习的稳健防御
  • 批准号:
    LP230100083
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236484
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Data-driven theory : adversarial immunodynamics, modelling and machine learning for engineered lymphocytes in the context of cancer immunotherapy
数据驱动理论:癌症免疫治疗背景下工程淋巴细胞的对抗性免疫动力学、建模和机器学习
  • 批准号:
    480418
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Operating Grants
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Applying Adversarial Machine Learning Techniques to Recover Deleted Information from Flash Storage
EAGER:SaTC:应用对抗性机器学习技术从闪存恢复​​已删除的信息
  • 批准号:
    2317563
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Resisting Automated Algorithmic Surveillance with Human-centered Adversarial Machine Learning
职业:通过以人为中心的对抗性机器学习来抵抗自动算法监视
  • 批准号:
    2144988
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Resisting Automated Algorithmic Surveillance with Human-centered Adversarial Machine Learning
职业:通过以人为中心的对抗性机器学习来抵抗自动算法监视
  • 批准号:
    2316287
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EXCELLENCE in RESEARCH: SECURING MACHINE LEARNING AGAINST ADVERSARIAL ATTACKS FOR CONNECTED AND AUTONOMOUS VEHICLES
卓越的研究:保护联网和自动驾驶车辆的机器学习免受对抗性攻击
  • 批准号:
    2200457
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Robust Adversarial Machine Learning for Measuring CP of the top-Higgs Yukawa Coupling
用于测量顶希格斯汤川耦合 CP 的鲁棒对抗机器学习
  • 批准号:
    547332-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Theoretical Foundation and Practical Platform for Adversarial Machine Learning
对抗性机器学习的理论基础和实践平台
  • 批准号:
    543522-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了