Collaborative Research: Machine Learning methods for multi-disciplinary multi-scales problems

协作研究:多学科多尺度问题的机器学习方法

基本信息

  • 批准号:
    1939916
  • 负责人:
  • 金额:
    $ 29.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This project addresses two of the most pressing challenges in modern scientific research: (a) modeling natural phenomena across a broad range of space and time scales, and (b) the application of data science to discover physically meaningful relationships from large datasets. It will leverage knowledge from related and disparate disciplines, connecting them through data science. Four specific problems will be studied: cloud formation and evolution, movement of particles through random media, frustrated magnetic systems, and the reconstruction of urban topography. These benchmark problems have been selected as they capture different disciplinary aspects of multi-scale challenges. State-of-the-art methods in machine learning (including Artificial Neural Networks) will be used to develop new mathematical representation for small-scale processes. If successful, this project will substantially increase the capability of scientific computing to address a wide variety of important problems from the natural and social sciences, and will be disseminated widely through a pair of workshops, multiple campus visits across the 5-institution consortium, high impact peer-reviewed publications and presentations and the training of a cadre of more than a dozen post-docs and students.This project will develop, implement and evaluate a new constrained optimization framework to discover and test physical phenomena at different resolutions and scales, including new machine learning algorithms aimed at discovering the stochastic differential equations underlying noisy data. This will be used to train physical parameterizations that account for the effects of small-scale processes in coarse resolution models. Core to this will be the design of a new framework to constrain artificial neural networks to deliver solutions that are interpretable and meaningful in the domain sciences and that can be directly associated with differential operators.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Mathematical Sciences within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了现代科学研究中两个最紧迫的挑战:(a)在广泛的空间和时间尺度上对自然现象进行建模,以及(b)应用数据科学从大型数据集中发现物理上有意义的关系。它将利用相关和不同学科的知识,通过数据科学将它们联系起来。将研究四个具体问题:云的形成和演化、粒子在随机介质中的运动、受挫磁系统和城市地形的重建。选择这些基准问题是因为它们捕获了多尺度挑战的不同学科方面。最先进的机器学习方法(包括人工神经网络)将用于开发小规模过程的新数学表示。如果成功,该项目将大大提高科学计算的能力,以解决自然科学和社会科学的各种重要问题,并将通过两个研讨会、对5个机构联盟的多次校园访问、高影响力的同行评审出版物和演讲以及十多名博士后和学生的培训等方式广泛传播。该项目将开发、实施和评估一个新的约束优化框架,以发现和测试不同分辨率和尺度的物理现象,包括旨在发现噪声数据下的随机微分方程的新机器学习算法。这将用于训练物理参数化,以解释粗分辨率模型中小规模过程的影响。其核心将是设计一个新的框架来约束人工神经网络,以提供在领域科学中可解释和有意义的解决方案,并且可以直接与微分算子相关联。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分,由HDR和美国国家科学基金会数学与物理科学理事会数学科学部共同支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian framework for studying climate anomalies and social conflicts
  • DOI:
    10.1002/env.2778
  • 发表时间:
    2022-11-21
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Mukherjee,Ujjal Kumar;Bagozzi,Benjamin E.;Chatterjee,Snigdhansu
  • 通讯作者:
    Chatterjee,Snigdhansu
A dependent multimodel approach to climate prediction with Gaussian processes
利用高斯过程进行气候预测的相关多模型方法
  • DOI:
    10.1017/eds.2022.24
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thompson, Marten;Braverman, Amy;Chatterjee, Snigdhansu
  • 通讯作者:
    Chatterjee, Snigdhansu
On weighted multivariate sign functions
关于加权多元符号函数
  • DOI:
    10.1016/j.jmva.2022.105013
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Majumdar, Subhabrata;Chatterjee, Snigdhansu
  • 通讯作者:
    Chatterjee, Snigdhansu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Snigdhansu Chatterjee其他文献

Fast and General Model Selection using Data Depth and Resampling
使用数据深度和重采样进行快速通用模型选择
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Majumdar;Snigdhansu Chatterjee
  • 通讯作者:
    Snigdhansu Chatterjee
Mining Novel Multivariate Relationships in Time Series Data Using Correlation Networks
使用相关网络挖掘时间序列数据中的新型多元关系
  • DOI:
    10.1109/tkde.2019.2911681
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Saurabh Agrawal;M. Steinbach;Daniel Boley;Snigdhansu Chatterjee;G. Atluri;A. T. Dang;S. Liess;Vipin Kumar
  • 通讯作者:
    Vipin Kumar
A Bootstrap Test Using Maximum Likelihood Ratio Statistics to Check the Similarity of Two 3-Dimensionally Oriented Data Samples
  • DOI:
    10.1023/a:1021776814497
  • 发表时间:
    1998-04-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Sojen Joy;Snigdhansu Chatterjee
  • 通讯作者:
    Snigdhansu Chatterjee
Approximate Bayesian Computation for Physical Inverse Modeling
物理逆建模的近似贝叶斯计算
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neel Chatterjee;Somya Sharma;S. Swisher;Snigdhansu Chatterjee
  • 通讯作者:
    Snigdhansu Chatterjee
Computational Data Sciences for Actionable Insights on Climate Extremes and Uncertainty
计算数据科学对极端气候和不确定性的可行见解
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ganguly;E. Kodra;Snigdhansu Chatterjee;A. Banerjee;H. Najm
  • 通讯作者:
    H. Najm

Snigdhansu Chatterjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Snigdhansu Chatterjee', 18)}}的其他基金

Collaborative Research: C1: Learning the Universal Free Energy Function
合作研究:C1:学习通用自由能函数
  • 批准号:
    1939956
  • 财政年份:
    2020
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Multivariate Quantiles for Rapid Spatio-Temporal Threat Detection
ATD:协作研究:用于快速时空威胁检测的多元分位数
  • 批准号:
    1737918
  • 财政年份:
    2017
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
On Conditional Statistical Procedures for Simultaneous Model Selection, Inference, and Prediction in Complex Climate Systems
复杂气候系统中同时模型选择、推理和预测的条件统计程序
  • 批准号:
    1622483
  • 财政年份:
    2016
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Computation-driven small area inference with applications
协作研究:计算驱动的小区域推理与应用
  • 批准号:
    0851705
  • 财政年份:
    2009
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 29.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了