CoPe EAGER: Development of a Drone-Based Coastal Change Monitoring Program through Citizen Science Partnership and Capacity Building

CoPe EAGER:通过公民科学合作和能力建设开发基于无人机的海岸变化监测计划

基本信息

  • 批准号:
    1939979
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The severity of coastal hazards (e.g. erosion) requires better data and quantitative assessments to understand the physical changes to coastlines, their causes, and rates of change, and to develop evidence-based hazard mitigation strategies and policies. To address this need, this grant will conduct a pilot program (IC-CREAM): Interdisciplinary Citizen-based Coastal REmote Sensing for Adaptative Management) to test hypotheses about the feasibility and scientific value of a citizen-science approach to creating a localized, repeat aerial image database on coastal processes in the Great Lakes. The intellectual merit of this cross-disciplinary, mixed methods project will make several scientific advancements relevant to the fields of remote sensing, GIScience, coastal science, geomorphology, and geography. Using citizen-operated drones is a new approach to collecting remotely sensed high-resolution time series imagery about landscape change and processes. Citizen science monitoring with drones and smartphones will allow for the documentation of the impacts of coastal change across a broader geographic region than is currently possible. New and better data generated during this project is critical for improving modeling and assessments of coastal change, and for engaging communities on the topic of coastal resilience because the citizen-science collaboration offers a new way to get communities involved in developing sustainable coastal management strategies. Training graduate and undergraduate students in coastal geomorphology, remote sensing, and community engagement will be key component of this grant. Students participating in this project will develop field and laboratory skills associated with drone operations as well as strong communication skills through their participation in the community engagement workshops and on-going support and coordination with the citizen scientists.This grant will train a team of citizen scientists composed of practitioners and community stakeholders to collect repeat aerial imagery, via an unoccupied aerial system (UAS), of coastal sites in six communities along Lakes Michigan, Huron, and Superior to document erosion and accretion associated with fluctuating water levels, storms, and human interventions. The long-term goal is to compile a database of localized, repeat imagery of coastal areas across the Great Lakes region to understand their physical changes, root causes of these physical changes, and the associated environmental, social, and economic impacts. This project will evaluate: (1) whether properly trained and supervised community-member citizen scientists can generate high quality data across a broad spatial scale that contributes to scientific research on local and regional coastal processes and (2) whether engaging community stakeholders in rigorous scientific investigations improves the public?s understanding of coastal processes and hazards enhances the capacity for proactive decision-making. Citizen scientists will be trained on the basics of UAS operation, data collection, and FAA regulations in order to pass the FAA part 107 exam and become certified remote pilots. They will then collect repeat aerial imagery of beaches, bluffs, and dunes (seasonal and before/after storms). Images will be processed using structure-from-motion photogrammetry into digital surface models (DSMs). These DSMs, along with the aerial images, will be analyzed to quantify coastal geomorphic change. Results will be shared with the citizen scientists who will assist the research team in communicating the findings publicly. Interviews and surveys will be conducted with citizen scientists and community stakeholders to evaluate whether the coupled researcher/citizen scientist approach is beneficial for educating the public on coastal change / hazards as well as assisting in making informed coastal management decisions. This project will be the first step towards developing a collaborative and coordinated researcher and stakeholder network focused on coastal hazards in the Great Lakes and will be a model for other coastal regions nationally.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沿海灾害(如侵蚀)的严重程度需要更好的数据和定量评估,以了解海岸线的物理变化、其原因和变化率,并制定基于证据的减灾战略和政策。为了满足这一需求,这笔拨款将开展一个试点项目(IC-CREAM):基于公民的跨学科沿海遥感适应性管理),以测试关于公民科学方法的可行性和科学价值的假设,以创建一个关于五大湖沿海过程的本地化、重复航空图像数据库。这个跨学科、混合方法项目的智力价值将在遥感、gisscience、海岸科学、地貌学和地理学等领域取得若干科学进展。使用民用无人机是收集有关景观变化和过程的遥感高分辨率时间序列图像的新方法。使用无人机和智能手机的公民科学监测将允许在比目前更广泛的地理区域内记录沿海变化的影响。在这个项目中产生的新的和更好的数据对于改进沿海变化的建模和评估,以及让社区参与沿海复原力的主题至关重要,因为公民科学合作提供了一种让社区参与制定可持续沿海管理战略的新途径。在海岸地貌学、遥感和社区参与方面培训研究生和本科生将是这项资助的关键组成部分。参与该项目的学生将通过参与社区参与研讨会以及与公民科学家的持续支持和协调,培养与无人机操作相关的现场和实验室技能,以及强大的沟通技巧。这项拨款将培训一个由实践者和社区利益相关者组成的公民科学家团队,通过无人驾驶航空系统(UAS)收集密歇根湖、休伦湖和苏superior湖沿岸六个社区沿海地点的重复航空图像,以记录与波动水位、风暴和人为干预相关的侵蚀和增加。该项目的长期目标是建立一个五大湖地区沿海地区的局部重复图像数据库,以了解其物理变化、这些物理变化的根本原因以及相关的环境、社会和经济影响。该项目将评估:(1)经过适当培训和监督的社区公民科学家是否能够在广泛的空间尺度上生成高质量的数据,从而有助于对当地和区域沿海过程的科学研究;(2)让社区利益相关者参与严格的科学调查是否能改善公众?美国对海岸过程和灾害的了解增强了主动决策的能力。公民科学家将接受UAS操作,数据收集和FAA法规基础知识的培训,以通过FAA 107部分考试并成为认证的远程飞行员。然后,他们将收集海滩、悬崖和沙丘(季节性和风暴前后)的重复航拍图像。图像将使用运动结构摄影测量法处理成数字表面模型(DSMs)。将对这些dsm和航空图像进行分析,以量化沿海地貌变化。结果将与公民科学家分享,他们将协助研究小组公开交流研究结果。与公民科学家和社区利益相关者进行访谈和调查,以评估研究人员/公民科学家相结合的方法是否有利于教育公众了解海岸变化/危害,并协助做出明智的海岸管理决策。该项目将是朝着建立一个以五大湖沿海灾害为重点的协作和协调的研究人员和利益相关者网络迈出的第一步,并将成为全国其他沿海地区的典范。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using existing infrastructure as ground control points to support citizen science coastal UAS monitoring programs
  • DOI:
    10.3389/fenvs.2023.1101458
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucas F. Rabins;E. Theuerkauf;Erin L. Bunting
  • 通讯作者:
    Lucas F. Rabins;E. Theuerkauf;Erin L. Bunting
Initial insights into the development and implementation of a citizen-science drone-based coastal change monitoring program in the Great Lakes region
  • DOI:
    10.1016/j.jglr.2022.01.011
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    E. Theuerkauf;Erin L. Bunting;Elizabeth A. Mack;Lucas A. Rabins
  • 通讯作者:
    E. Theuerkauf;Erin L. Bunting;Elizabeth A. Mack;Lucas A. Rabins
Coastal Typology: An Analysis of the Spatiotemporal Relationship between Socioeconomic Development and Shoreline Change
海岸类型学:社会经济发展与海岸线变化的时空关系分析
  • DOI:
    10.3390/land9070218
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Mack, Elizabeth A.;Theuerkauf, Ethan;Bunting, Erin
  • 通讯作者:
    Bunting, Erin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erin Bunting其他文献

Erin Bunting的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
  • 批准号:
    2324742
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER: Secure Research Impact Metric Data Exchange: Data Supply Chain and Vocabulary Development
EAGER:安全研究影响指标数据交换:数据供应链和词汇开发
  • 批准号:
    2335827
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER GERMINATION Collaborative Research: Leveraging a Research Development Professional Network to Catalyze Statewide Innovative and Societally Relevant Research
渴望萌芽合作研究:利用研究开发专业网络促进全州创新和社会相关研究
  • 批准号:
    2409875
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Initial Phase of Development of a Molecular Isomer Resolving Aerosol Collector and Analyzer (MIRACA)
EAGER:分子异构体解析气溶胶收集器和分析仪 (MIRACA) 开发的初始阶段
  • 批准号:
    2322916
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Development of a Fluorescent Reporter for Protein-Membrane Interactions
EAGER:开发蛋白质-膜相互作用的荧光报告基因
  • 批准号:
    2330643
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Development and Application of Liutex and Third Generation of Vortex Definition and Identification
EAGER:Liutex和第三代涡定义与识别的开发与应用
  • 批准号:
    2300052
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Development of Novel Chemical Ionization Detection of Peroxy Radicals for Fundamental Kinetics Experiments
EAGER:开发用于基础动力学实验的新型过氧自由基化学电离检测
  • 批准号:
    2336463
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER GERMINATION Collaborative Research: Leveraging a Research Development Professional Network to Catalyze Statewide Innovative and Societally Relevant Research
渴望萌芽合作研究:利用研究开发专业网络促进全州创新和社会相关研究
  • 批准号:
    2203442
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Development of prompt molecular tagging velocimetry and thermometry
EAGER:快速分子标记测速和测温技术的发展
  • 批准号:
    2234149
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了