Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence

合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆

基本信息

项目摘要

The brain is arguably the most sophisticated and the most efficient computational machine in the universe. The human brain, for example, comprises about 100 billion neurons that form an interconnected circuit with well over 100 trillion connections. Understanding how a multitude of brain functions emerge from the underlying neuronal circuit will give insights into the operating principles of the brain. In this award, a multidisciplinary team of systems biologist, computational biologist, material scientist, neuroscientist, and machine learning expert will work synergistically to leverage the data revolution in neuroscience to answer a fundamental question: How does the brain learn, store, and process information? The team will develop and apply advanced data analysis algorithms to harness the great volume of neuronal data generated by the latest imaging and molecular profiling technologies, for elucidating the neuronal circuits driving brain functions. Computer simulations of a spin-electronic (spintronic) device will further serve as a platform to validate and emulate important operational characteristics of such neuronal circuits. The award sets the groundwork for an interdisciplinary data science research and educational program that will bring a new and powerful paradigm for studying brain functions as well as for designing transformative brain-inspired devices for information processing, data storage, computing, and decision making.The project has a specific focus on an essential function of the brain: motor-skill learning. This function emerges from the underlying circuitry of neurons that governs the activities of molecular signal transmission and neuronal firing. Importantly, the neuronal circuit in a mammalian brain is highly plastic and dynamic, features that endow animals with the ability to respond to myriad external stimulations through learning. By harnessing the latest data revolution in neuronal imaging, single neuron molecular profiling, spintronic device simulation, network inference, and machine learning, a team of multidisciplinary investigators will be supported by this award to investigate the fundamental principle of neuronal circuit rewiring that drives brain?s learning function. More specifically, the team sets out to achieve the following specific tasks: (A) Infer learning-induced rewiring of large-scale neuronal networks from two-photon calcium imaging data through the development of novel and powerful network inference algorithms; (B) Build biochemical-based models of neuronal circuits by integrating molecular profiling with neuron firing and connectome dynamics; and (C) Develop a spintronic material network model that emulates learning and memory formation by exploiting the spin dynamics in spintronic materials. The project seeks to lay the foundation for the creation of an interdisciplinary data-intensive brain-to-materials initiative that will be applied to understand and emulate the operational principles of brain neuronal circuits underlying learning, cognition, memory formation, and other behaviors. The outcomes of the initiative will have a paramount impact on the society, not only in our understanding of the brain and its functions, but also in overcoming current bottlenecks of existing computing architectures. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑可以说是宇宙中最复杂、最高效的计算机器。例如,人类的大脑由大约1000亿个神经元组成,这些神经元形成了一个相互连接的回路,其中有超过100万亿个连接。了解大量的大脑功能是如何从潜在的神经元回路中产生的,将有助于深入了解大脑的运作原理。在这个奖项中,一个由系统生物学家、计算生物学家、材料科学家、神经科学家和机器学习专家组成的多学科团队将协同工作,利用神经科学的数据革命来回答一个基本问题:大脑是如何学习、存储和处理信息的?该团队将开发和应用先进的数据分析算法,利用最新的成像和分子分析技术产生的大量神经元数据,阐明驱动大脑功能的神经元回路。自旋电子(自旋电子)设备的计算机模拟将进一步作为验证和模拟这种神经元电路的重要操作特性的平台。该奖项为跨学科数据科学研究和教育计划奠定了基础,将为研究大脑功能以及设计用于信息处理、数据存储、计算和决策的变革性大脑启发设备带来新的强大范例。该项目特别关注大脑的一个基本功能:运动技能学习。这种功能来自于控制分子信号传递和神经元放电活动的神经元的底层电路。重要的是,哺乳动物大脑中的神经元回路具有高度的可塑性和动态性,这些特征赋予了动物通过学习对无数外部刺激做出反应的能力。通过利用神经元成像、单神经元分子分析、自旋电子设备模拟、网络推理和机器学习方面的最新数据革命,一个多学科研究团队将得到该奖项的支持,研究驱动大脑神经回路重新布线的基本原理。S学习函数。更具体地说,该团队着手实现以下具体任务:(A)通过开发新颖而强大的网络推理算法,从双光子钙成像数据推断出学习诱导的大规模神经元网络的重新布线;(B)通过将分子图谱与神经元放电和连接体动力学相结合,建立基于生化的神经元回路模型;(C)开发一个自旋电子材料网络模型,利用自旋电子材料中的自旋动力学来模拟学习和记忆的形成。该项目旨在为创建跨学科数据密集型大脑-材料计划奠定基础,该计划将应用于理解和模拟学习、认知、记忆形成和其他行为背后的大脑神经元回路的操作原理。这项计划的成果将对社会产生至关重要的影响,不仅在我们对大脑及其功能的理解方面,而且在克服现有计算架构的当前瓶颈方面。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linbing Wang其他文献

Analysis of mineral composition and microstructure of gravel aggregate based on XRD and SEM
基于X射线衍射和扫描电镜的碎石骨料矿物成分和微观结构分析
  • DOI:
    10.1080/14680629.2017.1329869
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jiangfeng Wu;Linbing Wang;Linjian Meng
  • 通讯作者:
    Linjian Meng
Tensile strength and paste–aggregate bonding characteristics of self-consolidating concrete
自密实混凝土的拉伸强度及浆体-骨料粘结特性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Druta;Linbing Wang;D. Lane
  • 通讯作者:
    D. Lane
Implementation of ensemble Artificial Neural Network and MEMS wireless sensors for In-Situ asphalt mixture dynamic modulus prediction
  • DOI:
    10.1016/j.conbuildmat.2023.131118
  • 发表时间:
    2023-05-09
  • 期刊:
  • 影响因子:
  • 作者:
    Cheng Zhang;Dylan G. Ildefonzo;Shihui Shen;Linbing Wang;Hai Huang
  • 通讯作者:
    Hai Huang
Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review
Automated, economical, and environmentally-friendly asphalt mix design based on machine learning and multi-objective grey wolf optimization
基于机器学习和多目标灰狼优化的自动化、经济、环保沥青混合料设计

Linbing Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linbing Wang', 18)}}的其他基金

Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
  • 批准号:
    2308924
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
An International Workshop on the Genome of Stone-based Civil Infrastructure Materials, Beijing, China, 2016
国际石基土木基础设施材料基因组研讨会,中国北京,2016
  • 批准号:
    1545757
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
An International Workshop on Smart and Resilient Transportation Infrastructure
智能和弹性交通基础设施国际研讨会
  • 批准号:
    1066168
  • 财政年份:
    2011
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Digital Mix Design for Performance Optimization of Asphalt Concrete
沥青混凝土性能优化的数字配合比设计
  • 批准号:
    1000172
  • 财政年份:
    2010
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Support for US Participants to 2nd International Workshop on Microstructure and Micromechanics of Stone-based Infrastructure Materials; Beijing, China; Fall 2008
支持美国参与者参加第二届石基基础设施材料微观结构和微观力学国际研讨会;
  • 批准号:
    0829376
  • 财政年份:
    2008
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Development and Implementation of Digital Specimen and Digital Tester Technique for Infrastructure Materials
基础设施材料数字化试样和数字化测试仪技术的开发与实施
  • 批准号:
    0619969
  • 财政年份:
    2006
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
INTERNATIONAL WORKSHOP: MICRSOSTRUCTURE AND MICROMECHANICS OF STONE BASED INFRASTRUCTURE MATERIALS
国际研讨会:石基基础设施材料的微观结构和微观力学
  • 批准号:
    0612689
  • 财政年份:
    2006
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Unified Approach for Multiscale Characterization, Modeling, and Simulation for Stone-based Infrastructure Materials
石基基础设施材料多尺度表征、建模和仿真的统一方法
  • 批准号:
    0625927
  • 财政年份:
    2006
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Development and Implementation of Digital Specimen and Digital Tester Technique for Infrastructure Materials
基础设施材料数字化试样和数字化测试仪技术的开发与实施
  • 批准号:
    0438480
  • 财政年份:
    2004
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了