Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
基本信息
- 批准号:1939992
- 负责人:
- 金额:$ 39.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The brain is arguably the most sophisticated and the most efficient computational machine in the universe. The human brain, for example, comprises about 100 billion neurons that form an interconnected circuit with well over 100 trillion connections. Understanding how a multitude of brain functions emerge from the underlying neuronal circuit will give insights into the operating principles of the brain. In this award, a multidisciplinary team of systems biologist, computational biologist, material scientist, neuroscientist, and machine learning expert will work synergistically to leverage the data revolution in neuroscience to answer a fundamental question: How does the brain learn, store, and process information? The team will develop and apply advanced data analysis algorithms to harness the great volume of neuronal data generated by the latest imaging and molecular profiling technologies, for elucidating the neuronal circuits driving brain functions. Computer simulations of a spin-electronic (spintronic) device will further serve as a platform to validate and emulate important operational characteristics of such neuronal circuits. The award sets the groundwork for an interdisciplinary data science research and educational program that will bring a new and powerful paradigm for studying brain functions as well as for designing transformative brain-inspired devices for information processing, data storage, computing, and decision making.The project has a specific focus on an essential function of the brain: motor-skill learning. This function emerges from the underlying circuitry of neurons that governs the activities of molecular signal transmission and neuronal firing. Importantly, the neuronal circuit in a mammalian brain is highly plastic and dynamic, features that endow animals with the ability to respond to myriad external stimulations through learning. By harnessing the latest data revolution in neuronal imaging, single neuron molecular profiling, spintronic device simulation, network inference, and machine learning, a team of multidisciplinary investigators will be supported by this award to investigate the fundamental principle of neuronal circuit rewiring that drives brain?s learning function. More specifically, the team sets out to achieve the following specific tasks: (A) Infer learning-induced rewiring of large-scale neuronal networks from two-photon calcium imaging data through the development of novel and powerful network inference algorithms; (B) Build biochemical-based models of neuronal circuits by integrating molecular profiling with neuron firing and connectome dynamics; and (C) Develop a spintronic material network model that emulates learning and memory formation by exploiting the spin dynamics in spintronic materials. The project seeks to lay the foundation for the creation of an interdisciplinary data-intensive brain-to-materials initiative that will be applied to understand and emulate the operational principles of brain neuronal circuits underlying learning, cognition, memory formation, and other behaviors. The outcomes of the initiative will have a paramount impact on the society, not only in our understanding of the brain and its functions, but also in overcoming current bottlenecks of existing computing architectures. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑可以说是宇宙中最复杂和最有效的计算机器。例如,人类大脑由大约1000亿个神经元组成,这些神经元形成了一个具有超过100万亿个连接的互连电路。了解大量的大脑功能是如何从潜在的神经元回路中产生的,将有助于深入了解大脑的工作原理。在这个奖项中,一个由系统生物学家、计算生物学家、材料科学家、神经科学家和机器学习专家组成的多学科团队将协同工作,利用神经科学中的数据革命来回答一个基本问题:大脑如何学习、存储和处理信息? 该团队将开发和应用先进的数据分析算法,利用最新的成像和分子分析技术产生的大量神经元数据,阐明驱动大脑功能的神经元回路。自旋电子器件的计算机模拟将进一步作为验证和仿真这种神经元电路的重要操作特性的平台。该奖项为跨学科的数据科学研究和教育计划奠定了基础,该计划将为研究大脑功能以及设计用于信息处理、数据存储、计算和决策的变革性大脑启发设备带来新的强大范式。该项目特别关注大脑的基本功能:运动技能学习。这种功能出现在神经元的底层电路中,该电路控制分子信号传输和神经元放电的活动。重要的是,哺乳动物大脑中的神经元回路具有高度的可塑性和动态性,这些特征赋予动物通过学习对无数外部刺激做出反应的能力。通过利用神经元成像,单神经元分子分析,自旋电子器件模拟,网络推理和机器学习的最新数据革命,一个多学科研究人员团队将获得该奖项的支持,以研究驱动大脑的神经元电路重新布线的基本原理。的学习功能。更具体地说,该团队着手实现以下具体任务:(A)通过开发新颖而强大的网络推理算法,从双光子钙成像数据中推断学习诱导的大规模神经元网络重新布线;(B)通过整合分子图谱与神经元放电和连接体动力学,构建基于生物化学的神经元回路模型;以及(C)开发自旋电子材料网络模型,其通过利用自旋电子材料中的自旋动力学来模拟学习和记忆形成。该项目旨在为创建跨学科的数据密集型大脑到材料倡议奠定基础,该倡议将用于理解和模拟学习,认知,记忆形成和其他行为的大脑神经元回路的操作原理。该计划的成果将对社会产生重大影响,不仅是在我们对大脑及其功能的理解方面,而且在克服现有计算架构的瓶颈方面。 该项目是美国国家科学基金会利用数据革命(HDR)大创意活动的一部分。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Divergent Learning-Related Transcriptional States of Cortical Glutamatergic Neurons.
皮质谷氨酸神经元的发散学习相关转录状态。
- DOI:10.1523/jneurosci.0302-23.2023
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Dunton,KatieL;Hedrick,NathanG;Meamardoost,Saber;Ren,Chi;Howe,JamesR;Wang,Jing;Root,CoryM;Gunawan,Rudiyanto;Komiyama,Takaki;Zhang,Ying;Hwang,EunJung
- 通讯作者:Hwang,EunJung
Deep learning for neural decoding in motor cortex
- DOI:10.1088/1741-2552/ac8fb5
- 发表时间:2022-10-01
- 期刊:
- 影响因子:4
- 作者:Liu, Fangyu;Meamardoost, Saber;Wang, Linbing
- 通讯作者:Wang, Linbing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Zhang其他文献
Nuclear matter properties with nucleon-nucleon forces up to fifth order in the chiral expansion
手性展开中核子-核力高达五阶的核物质特性
- DOI:
10.1103/physrevc.96.034307 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
Jinniu Hu;Ying Zhang;Evgeny Epelbaum;Ulf-G. Meißner;Jie Meng - 通讯作者:
Jie Meng
Semi-supervised support vector classification with self-constructed Universum
自建Universum的半监督支持向量分类
- DOI:
10.1016/j.neucom.2015.11.041 - 发表时间:
2016-05 - 期刊:
- 影响因子:6
- 作者:
Yingjie Tian;Ying Zhang;Dalian Liu - 通讯作者:
Dalian Liu
Experimental investigation and design of extruded aluminium alloy T-stubs connected by swage-locking pins
挤压锁紧销连接的挤压铝合金 T 形管的实验研究与设计
- DOI:
10.1016/j.engstruct.2019.109675 - 发表时间:
2019-12 - 期刊:
- 影响因子:5.5
- 作者:
Zhongxing Wang;Yuanqing Wang;Ying Zhang;Leroy Gardner;Yuanwen Ouyang - 通讯作者:
Yuanwen Ouyang
TransFusionNet: Semantic and Spatial Features Fusion Framework for Liver Tumor and Vessel Segmentation Under JetsonTX2
TransFusionNet:JetsonTX2 下肝脏肿瘤和血管分割的语义和空间特征融合框架
- DOI:
10.1109/jbhi.2022.3207233 - 发表时间:
2022-09 - 期刊:
- 影响因子:7.7
- 作者:
Xun Wang;Xudong Zhang;Gan Wang;Ying Zhang;Xin Shi;Huanhuan Dai;Min Liu;Zixuan Wang;Xiangyu Meng - 通讯作者:
Xiangyu Meng
Core Test Wrapper Design for Unicast and Multicast NOC Testing
用于单播和组播 NOC 测试的核心测试包装设计
- DOI:
10.3923/itj.2013.8242.8248 - 发表时间:
2013-12 - 期刊:
- 影响因子:0
- 作者:
Ying Zhang;Ning Wu;Fen Ge - 通讯作者:
Fen Ge
Ying Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Zhang', 18)}}的其他基金
RII Track-4: Visualization of Host-Microbe Interactions using CLASI-FISH
RII Track-4:使用 CLASI-FISH 可视化宿主-微生物相互作用
- 批准号:
1929078 - 财政年份:2020
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Adaptive Thermal Management for Next-Generation Implantable Devices
下一代植入设备的自适应热管理
- 批准号:
1711447 - 财政年份:2017
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Collaborative Research: Physiological Plasticity and Response of Benthic Foraminifera to Oceanic Deoxygenation
合作研究:底栖有孔虫的生理可塑性和对海洋脱氧的响应
- 批准号:
1557566 - 财政年份:2016
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
CAREER: Integrated Annotation and Comparative Analysis of Metabolic Models
职业:代谢模型的综合注释和比较分析
- 批准号:
1553211 - 财政年份:2016
- 资助金额:
$ 39.96万 - 项目类别:
Continuing Grant
CAREER: Adaptive Power Management for Supercapacitor-Operated Sustainable Wireless Sensor Networks
职业:超级电容器供电的可持续无线传感器网络的自适应电源管理
- 批准号:
1253390 - 财政年份:2013
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
GOALI: Platinum-Enriched Gamma + Gamma Prime Bond Coats for Next-Generation Single-Crystal Superalloys
GOALI:用于下一代单晶高温合金的富铂 Gamma Gamma Prime 粘结涂层
- 批准号:
0504566 - 财政年份:2005
- 资助金额:
$ 39.96万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 39.96万 - 项目类别:
Continuing Grant