Collaborative Research: Integrating Physics and Generative Machine-Learning Models for Inverse Materials Design
合作研究:整合物理和生成机器学习模型进行逆向材料设计
基本信息
- 批准号:1940166
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is aimed to address a grand challenge in data-intensive materials science and engineering to find better materials with desired properties, often with the goal to enhance performance in specific applications. This project addresses this grand challenge with a specific focus on finding metal organic framework (MOF) materials that are used to separate gas mixtures and finding better battery materials for energy storage. The PIs will combine theoretical methods from statistical mechanics and condensed-matter physics, and physics-based models, to generate information-rich materials data which is integrated with generative machine learning (ML) algorithms to search a complex chemical design space efficiently and to train deep learning models for fast screening of materials properties. This project will be carried out by a multidisciplinary collaboration involving researchers from physics, materials science and engineering, computer science, and mathematics. The resulting multidisciplinary environment fosters training the next generation data savvy scientists who will engage in collaborative multidisciplinary research. Existing approaches for computational design of metal organic frameworks (MOF) and solid-state electrolyte materials are largely based on screening of known materials or enumerative search of hypothetical materials. This project develops a new approach that integrates first principles calculations, experimental data and abundant data generated by physics-based models to train generalized antagonistic network (GAN) models for efficient search of the materials design space, and to train deep convolutional neural network (DCNN) models for fast and accurate screening of properties of the GAN-generated candidate materials. Additionally, graph-based GAN models will be used for MOF topology exploration and can be applied to other nanomaterials designs. More specifically, the investigators will: 1) develop and exploit physics-based models for fast calculation of properties such as diffusivity, ion conductivity, and mechanical stability; 2) develop generative adversarial network (GAN) models with built-in physics rules for efficient exploration of the chemical design space for both MOF materials and solid electrolytes; 3) use persistence homology and Bravais lattice sequence representations of MOF materials and solid electrolytes, respectively, to build Deep Convolutional Neural Network (DCNN) models for fast and accurate prediction of the physical properties of generated materials; 4) apply high-level quantum-mechanical calculations for verification of discovered materials. Accomplishments from this project will lead to accelerated discovery of novel nanostructured materials for gas separation and energy storage, materials for lithium-ion batteries, novel data-driven scheme for materials design, and theoretical methods enabling implementation of advanced data science techniques. The highly interdisciplinary collaboration will offer students unique opportunities to interact with a variety of disciplines, and training the next-generation scientists with the mindset for multidiscipline collaborations. Educational and outreach activities will be developed and undertaken in conjunction with the proposed research activities.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Materials Research within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在解决数据密集型材料科学和工程中的重大挑战,以找到具有所需特性的更好材料,通常旨在提高特定应用中的性能。该项目旨在解决这一重大挑战,重点是寻找用于分离气体混合物的金属有机框架(MOF)材料,并寻找更好的储能电池材料。PI将联合收割机结合统计力学和凝聚态物理学的理论方法以及基于物理的模型,以生成信息丰富的材料数据,该数据与生成机器学习(ML)算法相结合,以有效搜索复杂的化学设计空间,并训练深度学习模型,以快速筛选材料特性。该项目将通过多学科合作进行,涉及物理学,材料科学与工程,计算机科学和数学的研究人员。由此产生的多学科环境促进了下一代精通数据的科学家的培训,他们将参与多学科的合作研究。 现有的金属有机骨架(MOF)和固态电解质材料的计算设计方法主要基于已知材料的筛选或假设材料的枚举搜索。该项目开发了一种新方法,该方法集成了第一原理计算,实验数据和基于物理模型生成的丰富数据,以训练广义对抗网络(GAN)模型,用于有效搜索材料设计空间,并训练深度卷积神经网络(DCNN)模型,用于快速准确地筛选GAN生成的候选材料的属性。此外,基于图形的GAN模型将用于MOF拓扑探索,并可应用于其他纳米材料设计。更具体地说,研究人员将:1)开发和利用基于物理的模型,用于快速计算扩散率,离子电导率和机械稳定性等特性; 2)开发具有内置物理规则的生成对抗网络(GAN)模型,用于有效探索MOF材料和固体电解质的化学设计空间; 3)分别使用MOF材料和固体电解质的持久性同源和布拉维晶格序列表示来构建深度卷积神经网络(DCNN)模型,以快速准确地预测生成材料的物理性质; 4)应用高级量子力学计算来验证所发现的材料。该项目的成果将加速发现用于气体分离和储能的新型纳米结构材料、锂离子电池材料、新型数据驱动的材料设计方案以及实现先进数据科学技术的理论方法。高度跨学科的合作将为学生提供与各种学科互动的独特机会,并培养具有多学科合作思维的下一代科学家。教育和推广活动将与拟议的研究活动一起开发和开展。该项目是国家科学基金会利用数据革命(HDR)大创意活动的一部分,该奖项由HDR和NSF数学和物理科学理事会材料研究部共同支持。该奖项反映了NSF的法定使命,并被认为值得通过以下方式获得支持:使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frustration in Super‐Ionic Conductors Unraveled by the Density of Atomistic States
原子态密度揭示了超离子导体的挫败感
- DOI:10.1002/ange.202215544
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang, Shuo;Liu, Yunsheng;Mo, Yifei
- 通讯作者:Mo, Yifei
Can Substitutions Affect the Oxidative Stability of Lithium Argyrodite Solid Electrolytes?
取代会影响锂银矿固体电解质的氧化稳定性吗?
- DOI:10.1021/acsaem.1c03599
- 发表时间:2022
- 期刊:
- 影响因子:6.4
- 作者:Banik, Ananya;Liu, Yunsheng;Ohno, Saneyuki;Rudel, Yannik;Jiménez-Solano, Alberto;Gloskovskii, Andrei;Vargas-Barbosa, Nella M.;Mo, Yifei;Zeier, Wolfgang G.
- 通讯作者:Zeier, Wolfgang G.
Superionic Conducting Halide Frameworks Enabled by Interface-Bonded Halides
- DOI:10.1021/jacs.2c09446
- 发表时间:2022-12-30
- 期刊:
- 影响因子:15
- 作者:Fu, Jiamin;Wang, Shuo;Sun, Xueliang
- 通讯作者:Sun, Xueliang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yifei Mo其他文献
A cost-effective all-in-one halide material for all-solid-state batteries
一种用于全固态电池的具有成本效益的一体化卤化物材料
- DOI:
10.1038/s41586-025-09153-1 - 发表时间:
2025-06-25 - 期刊:
- 影响因子:48.500
- 作者:
Jiamin Fu;Changhong Wang;Shuo Wang;Joel W. Reid;Jianwen Liang;Jing Luo;Jung Tae Kim;Yang Zhao;Xiaofei Yang;Feipeng Zhao;Weihan Li;Bolin Fu;Xiaoting Lin;Yang Hu;Han Su;Xiaoge Hao;Yingjie Gao;Shutao Zhang;Ziqing Wang;Jue Liu;Hamid Abdolvand;Tsun-Kong Sham;Yifei Mo;Xueliang Sun - 通讯作者:
Xueliang Sun
Safety information on transgenic plants expressing Bacillus thuringiensis-Derived insect control protein
表达苏云金芽孢杆菌衍生昆虫控制蛋白的转基因植物的安全信息
- DOI:
10.1787/oecd_papers-v7-art35-en - 发表时间:
2018 - 期刊:
- 影响因子:9.4
- 作者:
Yunsheng Liu;Yifei Mo - 通讯作者:
Yifei Mo
Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries
用于全固态锂金属电池稳定循环的富空位超离子导电β-Li3N 电解质
- DOI:
10.1038/s41565-024-01813-z - 发表时间:
2024-11-25 - 期刊:
- 影响因子:34.900
- 作者:
Weihan Li;Minsi Li;Shuo Wang;Po-Hsiu Chien;Jing Luo;Jiamin Fu;Xiaoting Lin;Graham King;Renfei Feng;Jian Wang;Jigang Zhou;Ruying Li;Jue Liu;Yifei Mo;Tsun-Kong Sham;Xueliang Sun - 通讯作者:
Xueliang Sun
Transition of nc-SiC powder surface into grain boundaries during sintering by molecular dynamics simulation and neutron powder diffraction
通过分子动力学模拟和中子粉末衍射研究烧结过程中 nc-SiC 粉末表面向晶界的转变
- DOI:
10.1524/zkri.2007.2007.suppl_26.255 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Marcin Wojdyr;Yifei Mo;E. Grzanka;S. Stelmakh;S. Gierlotka;T. Proffen;T. W. Żerda;B. Palosz;I. Szlufarska - 通讯作者:
I. Szlufarska
Association between gestational hypnotic benzodiazepine receptor agonists exposure and adverse pregnancy outcomes: a systematic review and meta-analysis
- DOI:
10.1007/s00737-024-01516-3 - 发表时间:
2024-09-24 - 期刊:
- 影响因子:2.700
- 作者:
Xinyuan Wang;Jun Xu;Yifei Mo;Linrun Wang - 通讯作者:
Linrun Wang
Yifei Mo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yifei Mo', 18)}}的其他基金
Collaborative Research: DMREF: Accelerated Data-Driven Discovery of Ion-Conducting Materials
合作研究:DMREF:加速数据驱动的离子导电材料发现
- 批准号:
2118838 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Guiding synthesis of nanoparticles with nanometric phase diagram and in situ X-ray diffraction
合作研究:用纳米相图和原位X射线衍射指导纳米颗粒的合成
- 批准号:
2004837 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: A Robust High-Throughput Ab Initio Computation and Analysis Software Framework for Interface Materials Science
SI2-SSI:协作研究:用于界面材料科学的强大高通量从头计算和分析软件框架
- 批准号:
1550423 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325835 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325837 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325838 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325836 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310412 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
IntBIO: Collaborative Research: Phenotypes of the Anthropocene: integrating the consequences of sensory stressors across biological scales
IntBIO:合作研究:人类世的表型:整合跨生物尺度的感觉压力源的后果
- 批准号:
2316364 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant