CoPe EAGER: Modeling the Social Ecology of Coastal Flood Risk

CoPe EAGER:模拟沿海洪水风险的社会生态

基本信息

  • 批准号:
    1940171
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Coastal flooding is projected to worsen in the future due to a combination of continued expansion of coastal cities and increasing environmental variability. Unfortunately, many people in coastal areas lack the resources needed to avoid living and working in areas at risk of flooding, and experience great hardships when flooding occurs, finding it extremely difficult to recover their housing, health, and ability to return to work after flood events. In contrast, affluent urban areas are typically better protected, recover more quickly, and may even experience significant improvements after a flood event. This raises a deeply alarming concern that rising sea levels and more frequent and intense coastal flood events will not only impose enormous human and property costs on coastal communities, but might also deepen inequality, amplify social divisions and place long-term burdens on poor and marginalized communities. Such outcomes could in turn create conditions conducive to less trust in the political system and higher levels of civil unrest. This project seeks to better understand how the impacts of coastal flooding vary across social strata and identifies modeling tools and interventions, including community-based, policy and management options, that can be applied to mitigate coastal flood risks and constrain the cascade of negative outcomes. The work derives models that can inform policy debates over managing coastal flood risk, has the potential to empower vulnerable communities to engage in more effective and equitable flood planning and management, and expands workforce capacity in convergence approaches.This project develops and tests a knowledge platform and action framework that integrates fine-resolution flood modeling with socio-economic inequality analysis to assess fast and slow onset coastal flood risks and vulnerabilities at the household and community levels, with an emphasis on the distribution of impacts across social strata. Further analysis assesses implications for governance within and across communities. Pilot research focuses on two regions of California with high risks of flooding: the Los Angeles Metropolitan Region and the Sacramento-San Joaquin Delta Region. The goal of this research is to assess the extent to which flood visualization tools co-developed with vulnerable and differentiated communities can identify fair, affordable, site specific interventions that can mitigate flood risk and constrain negative social outcomes including long-term burdens on the poor, political outcomes that favor the rich, and conditions conducive to civil unrest. The research develops a novel quantitative framework for understanding and assessing the dynamic relationship between flood risk and socio-economic inequality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于沿海城市的持续扩张和环境变异性的增加,沿海洪水预计将在未来恶化。不幸的是,沿海地区的许多人缺乏必要的资源来避免在有洪水风险的地区生活和工作,并且在洪水发生时经历了极大的困难,发现在洪水事件发生后恢复住房、健康和重返工作岗位的能力极其困难。相比之下,富裕的城市地区通常受到更好的保护,恢复得更快,甚至在洪水事件发生后可能会有显著的改善。这引起了一个令人深感担忧的问题,即海平面上升和沿海洪水事件更加频繁和强烈,不仅会给沿海社区造成巨大的人员和财产损失,还可能加深不平等,扩大社会分化,给贫穷和边缘化社区带来长期负担。这样的结果可能反过来创造有利于减少对政治制度的信任和加剧内乱的条件。本项目旨在更好地了解沿海洪水对不同社会阶层的影响是如何变化的,并确定建模工具和干预措施,包括以社区为基础的政策和管理方案,这些工具和干预措施可用于减轻沿海洪水风险并限制负面后果的连锁反应。这项工作得出的模型可以为有关沿海洪水风险管理的政策辩论提供信息,有可能使脆弱社区能够参与更有效和公平的洪水规划和管理,并通过趋同方法扩大劳动力能力。该项目开发并测试了一个知识平台和行动框架,该框架将精细分辨率洪水建模与社会经济不平等分析相结合,以评估家庭和社区层面的快发和慢发沿海洪水风险和脆弱性,重点关注各社会阶层的影响分布。进一步的分析评估了对社区内部和跨社区治理的影响。试点研究集中在加州洪水风险较高的两个地区:洛杉矶大都会区和萨克拉门托-圣华金三角洲地区。本研究的目的是评估洪水可视化工具在多大程度上可以与脆弱和差异化社区共同开发,以确定公平、负担得起的、特定地点的干预措施,这些干预措施可以减轻洪水风险,并限制负面的社会后果,包括对穷人的长期负担、有利于富人的政治结果以及有利于内乱的条件。该研究为理解和评估洪水风险与社会经济不平等之间的动态关系建立了一个新的定量框架。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large and inequitable flood risks in Los Angeles, California
加利福尼亚州洛杉矶存在巨大且不公平的洪水风险
  • DOI:
    10.1038/s41893-022-00977-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    27.6
  • 作者:
    Sanders, Brett F.;Schubert, Jochen E.;Kahl, Daniel T.;Mach, Katharine J.;Brady, David;AghaKouchak, Amir;Forman, Fonna;Matthew, Richard A.;Ulibarri, Nicola;Davis, Steven J.
  • 通讯作者:
    Davis, Steven J.
Framing the Problem of Flood Risk and Flood Management in Metropolitan Los Angeles
阐述洛杉矶大都会的洪水风险和洪水管理问题
  • DOI:
    10.1175/wcas-d-22-0013.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ulibarri, Nicola;Valencia-Uribe, Claudia;Sanders, Brett F.;Schubert, Jochen;Matthew, Richard;Forman, Fonna;Allaire, Maura;Brady, David
  • 通讯作者:
    Brady, David
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Matthew其他文献

PO-05-118 4-DIMENSIONAL INTRACARDIAC ECHOCARDIOGRAPHY WITH INTEGRATED ELECTROANATOMICAL MAPPING (EAM) WORKFLOW FOR VENTRICULAR ABLATION: A PRECLINICAL EXPERIENCE
用于心室消融的带有集成电解剖标测(EAM)工作流程的 PO-05-118 四维心内超声心动图:一项临床前经验
  • DOI:
    10.1016/j.hrthm.2025.03.1516
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Jonathan W. Dukes;Kruti Shah;Richard Matthew;Salman Farshchi
  • 通讯作者:
    Salman Farshchi
Toward improved sediment management and coastal resilience through efficient permitting in California
  • DOI:
    10.1007/s00267-023-01804-1
  • 发表时间:
    2023-05-16
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Kristen A. Goodrich;Nicola Ulibarri;Richard Matthew;Eric D. Stein;Matthew Brand;Brett F. Sanders
  • 通讯作者:
    Brett F. Sanders
PO-02-073 strongFEASIBILITY OF ARTIFICIAL INTELLIGENCE 3D ALGORITHM INTEGRATION WITH INTRACARDIAC ECHOCARDIOGRAPHY FOR LA IMAGING/strong
PO-02-073 人工智能 3D 算法与心腔内超声心动图结合用于左心房成像的可行性很强
  • DOI:
    10.1016/j.hrthm.2023.03.791
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Luigi Di Biase;Fengwei Zou;Aung Lin;Vito Grupposo;jacopo Marazzato;Nicola Tarantino;Sanghamitra Mohanty;Domenico G. Della Rocca;Andrea Natale;Guy Haiman;David Haimovich;Richard Matthew;Jaclyn Alcazar;Graca Costa;Roy Urman;Xiaodong Zhang
  • 通讯作者:
    Xiaodong Zhang
Regional dynamics of environment and security in post-conflict states
  • DOI:
    10.1016/j.sbspro.2011.03.015
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Matthew
  • 通讯作者:
    Richard Matthew

Richard Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Education DCL: EAGER: Teaching Privacy via Stakeholder Modeling
教育 DCL:EAGER:通过利益相关者建模教授隐私
  • 批准号:
    2335625
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: IMPRESS-U: Modeling and Forecasting of Infection Spread in War and Post War Settings Using Epidemiological, Behavioral and Genomic Surveillance Data
EAGER:IMPRESS-U:使用流行病学、行为和基因组监测数据对战争和战后环境中的感染传播进行建模和预测
  • 批准号:
    2412914
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329801
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329802
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329800
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: Scalable Climate Modeling using Message-Passing Recurrent Neural Networks
EAGER:使用消息传递循环神经网络进行可扩展的气候建模
  • 批准号:
    2335773
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER GERMINATION: Computational Modeling from Scenario Development: A Pedagogy for Generating Novel Research Questions to Address Critical Societal Issues
渴望萌发:情景开发的计算模型:产生新的研究问题以解决关键社会问题的教学法
  • 批准号:
    2203623
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: Machine Learning and Data Assimilation for Discovery of Generalized Fokker-Planck Equation for Radiation Belt Modeling
EAGER:用于发现辐射带建模的广义福克-普朗克方程的机器学习和数据同化
  • 批准号:
    2211345
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER: Modeling and Control of COVID-19 Transmission in Indoor Environments
EAGER:室内环境中 COVID-19 传播的建模和控制
  • 批准号:
    2114439
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
EAGER International Type II: Sustainable International Collaboration in Spatiotemporal Modeling of Human Mobility and Contagion Dynamics for COVID-19
EAGER International Type II:针对 COVID-19 的人类流动性和传染动力学时空建模的可持续国际合作
  • 批准号:
    2119334
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了