Collaborative Research: Science-Aware Computational Methods for Accelerating Data-Intensive Discovery: Astroparticle Physics as a Test Case

协作研究:加速数据密集型发现的科学感知计算方法:天体粒子物理学作为测试用例

基本信息

  • 批准号:
    1940209
  • 负责人:
  • 金额:
    $ 34.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

The rapid technological advances of the last two decades have ushered in an era of data-rich science for several disciplines. One such discipline is astroparticle physics, where researchers aim to discover what our Universe is made of by trying to directly detect Dark Matter. This discovery can be hastened if data science tools are used to extract significant domain-specific information from data, and to reliably test scientific hypotheses at scale. The overarching goal of this two-year project is to lay the groundwork for incorporating scientific knowledge into machine learning and data science methods in the context of scientific disciplines in which discovery requires effective, efficient analysis of lots of noisy data gathered by multiple imperfect sensors. In doing so, it not only advances the state-of-the-art in data science, machine learning, and astrophysics, but it also has the potential to accelerate data-driven discoveries in other scientific disciplines where data shares similar characteristics.This project will develop innovative domain-enhanced data science methods that will be based on probabilistic graphical models and graph-regularized inverse problems. Using the leading astroparticle experiment XENON as a test bed, the investigators will explore and demonstrate approaches for incorporating domain knowledge into machine learning and data science methods. In doing so, the investigators will address major data-analysis challenges in the context of dark matter identification. Additionally, the investigators will invest significant effort reaching out to other data-intensive science communities, such as materials science, oceanography, and meteorology, that can benefit from the new methods and ideas. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去二十年的快速技术进步已经为几个学科开创了一个数据丰富的科学时代。其中一门学科是天体粒子物理学,研究人员的目标是通过直接探测暗物质来发现我们的宇宙是由什么组成的。如果使用数据科学工具从数据中提取重要的领域特定信息,并可靠地大规模测试科学假设,则可以加速这一发现。这个为期两年的项目的总体目标是为在科学学科背景下将科学知识融入机器学习和数据科学方法奠定基础,在这些学科背景下,发现需要对多个不完美传感器收集的大量噪声数据进行有效、高效的分析。在这样做的过程中,它不仅推动了数据科学、机器学习和天体物理学的最新发展,而且还有可能加速数据具有类似特征的其他科学学科中数据驱动的发现。该项目将开发基于概率图模型和图正则化逆问题的创新领域增强数据科学方法。使用领先的天体粒子实验XENON作为测试平台,研究人员将探索和演示将领域知识纳入机器学习和数据科学方法的方法。在此过程中,研究人员将解决暗物质识别背景下的主要数据分析挑战。此外,研究人员将投入大量精力与其他数据密集型科学社区接触,如材料科学、海洋学和气象学,这些社区可以从新的方法和想法中受益。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Optical Map in Liquid Xenon Detector with Poisson Likelihood Loss
使用泊松似然损失学习液氙探测器中的光学图
A review on machine learning for neutrino experiments
  • DOI:
    10.1142/s0217751x20430058
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    F. Psihas;M. Groh;C. Tunnell;K. Warburton
  • 通讯作者:
    F. Psihas;M. Groh;C. Tunnell;K. Warburton
Search for inelastic scattering of WIMP dark matter in XENON1T
  • DOI:
    10.1103/physrevd.103.063028
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5
  • 作者:
    X. C. E. Aprile;J. Aalbers;F. Agostini;M. Alfonsi;L. Althueser;F. Amaro;S. Andaloro;E. Angelino;J. Angevaare;V. C. Antochi;F. Arneodo;L. Baudis;B. Bauermeister;L. Bellagamba;M. Benabderrahmane;A. Brown;E. Brown;S. Bruenner;G. Bruno;R. Budnik;C. Capelli;J. Cardoso;D. Cichon;B. Cimmino;M. Clark;D. Coderre;A. Colijn;J. Conrad;J. Cuenca;J. Cussonneau;M. Decowski;A. Depoian;P. Gangi;A. Giovanni;R. D. Stefano;S. Diglio;A. Elykov;A. Ferella;W. Fulgione;P. Gaemers;R. Gaior;M. Galloway;F. Gao;L. Grandi;C. Hils;K. Hiraide;L. Hoetzsch;J. Howlett;M. Iacovacci;Y. Itow;F. Joerg;N. Kato;S. Kazama;M. Kobayashi;G. Koltman;A. Kopec;H. Landsman;R. Lang;L. Levinson;S. Liang;Q. Lin;S. Lindemann;M. Lindner;F. Lombardi;J. Long;J. Lopes;Y. Ma;C. Macolino;J. Mahlstedt;A. Mancuso;L. Manenti;A. Manfredini;F. Marignetti;T. Undagoitia;K. Martens;J. Masbou;D. Masson;S. Mastroianni;M. Messina;K. Miuchi;K. Mizukoshi;A. Molinario;K. Morra;S. Moriyama;Y. Mosbacher;M. Murra;J. Naganoma;K. Ni;U. Oberlack;K. Odgers;J. Palacio;B. Pelssers;R. Peres;J. Pienaar;M. Pierre;V. Pizzella;G. Plante;J. Qi;J. Qin;D. Garc'ia;S. Reichard;A. Rocchetti;N. Rupp;J. Santos;G. Sartorelli;N. vSarvcevi'c;M. Scheibelhut;J. Schreiner;D. Schulte;H. Eissing;M. Schumann;L. Lavina;M. Selvi;F. Semeria;P. Shagin;E. Shockley;M. Silva;H. Simgen;A. Takeda;C. Therreau;D. Thers;F. Toschi;G. Trinchero;C. Tunnell;K. Valerius;M. Vargas;G. Volta;Y. Wei;C. Weinheimer;M. Weiss;D. Wenz;C. Wittweg;T. Wolf;Z. Xu;M. Yamashita;J. Ye;G. Zavattini;Y. Zhang;T. Zhu;J. Zopounidis
  • 通讯作者:
    X. C. E. Aprile;J. Aalbers;F. Agostini;M. Alfonsi;L. Althueser;F. Amaro;S. Andaloro;E. Angelino;J. Angevaare;V. C. Antochi;F. Arneodo;L. Baudis;B. Bauermeister;L. Bellagamba;M. Benabderrahmane;A. Brown;E. Brown;S. Bruenner;G. Bruno;R. Budnik;C. Capelli;J. Cardoso;D. Cichon;B. Cimmino;M. Clark;D. Coderre;A. Colijn;J. Conrad;J. Cuenca;J. Cussonneau;M. Decowski;A. Depoian;P. Gangi;A. Giovanni;R. D. Stefano;S. Diglio;A. Elykov;A. Ferella;W. Fulgione;P. Gaemers;R. Gaior;M. Galloway;F. Gao;L. Grandi;C. Hils;K. Hiraide;L. Hoetzsch;J. Howlett;M. Iacovacci;Y. Itow;F. Joerg;N. Kato;S. Kazama;M. Kobayashi;G. Koltman;A. Kopec;H. Landsman;R. Lang;L. Levinson;S. Liang;Q. Lin;S. Lindemann;M. Lindner;F. Lombardi;J. Long;J. Lopes;Y. Ma;C. Macolino;J. Mahlstedt;A. Mancuso;L. Manenti;A. Manfredini;F. Marignetti;T. Undagoitia;K. Martens;J. Masbou;D. Masson;S. Mastroianni;M. Messina;K. Miuchi;K. Mizukoshi;A. Molinario;K. Morra;S. Moriyama;Y. Mosbacher;M. Murra;J. Naganoma;K. Ni;U. Oberlack;K. Odgers;J. Palacio;B. Pelssers;R. Peres;J. Pienaar;M. Pierre;V. Pizzella;G. Plante;J. Qi;J. Qin;D. Garc'ia;S. Reichard;A. Rocchetti;N. Rupp;J. Santos;G. Sartorelli;N. vSarvcevi'c;M. Scheibelhut;J. Schreiner;D. Schulte;H. Eissing;M. Schumann;L. Lavina;M. Selvi;F. Semeria;P. Shagin;E. Shockley;M. Silva;H. Simgen;A. Takeda;C. Therreau;D. Thers;F. Toschi;G. Trinchero;C. Tunnell;K. Valerius;M. Vargas;G. Volta;Y. Wei;C. Weinheimer;M. Weiss;D. Wenz;C. Wittweg;T. Wolf;Z. Xu;M. Yamashita;J. Ye;G. Zavattini;Y. Zhang;T. Zhu;J. Zopounidis
Detector signal characterization with a Bayesian network in XENONnT
  • DOI:
    10.1103/physrevd.108.012016
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    X. C. E. Aprile;K. Abe;S. A. Maouloud;L. Althueser;B. Andrieu;E. Angelino;J. Angevaare;V. C. Antochi;D. A. Martin;F. Arneodo;L. Baudis;A. Baxter;M. Bazyk;L. Bellagamba;R. Biondi;A. Bismark;E. J. Brookes;A. Brown;S. Bruenner;G. Bruno;R. Budnik;T. Bui;C. Cai;J. Cardoso;D. Cichon;A. P. C. Chavez;A. Colijn;J. Conrad;J. Cuenca-Garc'ia;J. Cussonneau;V. D’Andrea;M. P. Decowski;P. Gangi;S. D. Pede;S. Diglio;K. Eitel;A. Elykov;S. Farrell;A. Ferella;C. Ferrari;H. Fischer;M. Flierman;W. Fulgione;C. Fuselli;P. Gaemers;R. Gaior;A. G. Rosso;M. Galloway;F. Gao;R. Glade-Beucke;L. Grandi;J. Grigat;H. Guan;M. Guida;R. Hammann;A. Higuera;C. Hils;L. Hoetzsch;N. Hood;J. Howlett;M. Iacovacci;Y. Itow;J. Jakob;F. Joerg;A. Joy;N. Kato;M. Kara;P. Kavrigin;S. Kazama;M. Kobayashi;G. Koltman;A. Kopec;F. Kuger;H. Landsman;R. Lang;L. Levinson;I. Li;S. Li;S. Liang;S. Lindemann;M. Lindner;K. Liu;J. Loizeau;F. Lombardi;J. Long;J. Lopes;Y. Ma;C. Macolino;J. Mahlstedt;A. Mancuso;L. Manenti;F. Marignetti;T. Undagoitia;K. Martens;J. Masbou;D. Masson;E. Masson;S. Mastroianni;M. Messina;K. Miuchi;K. Mizukoshi;A. Molinario;S. Moriyama;K. Morra;Y. Mosbacher;M. Murra;J. Muller;K. Ni;U. Oberlack;B. Paetsch;J. Palacio;Q. Pellegrini;R. Peres;C. Peters;J. Pienaar;M. Pierre;V. Pizzella;G. Plante;T. Pollmann;J. Qi;J. Qin;D. R. Garc'ia;R. Singh;L. Sanchez;J. Santos;I. Sarnoff;G. Sartorelli;J. Schreiner;D. Schulte;P. Schulte;H. Eissing;M. Schumann;L. Lavina;M. Selvi;F. Semeria;P. Shagin;S. Shi;E. Shockley;M. Silva;H. Simgen;A. Takeda;P. Tan;A. Terliuk;D. Thers;F. Toschi;G. Trinchero;C. Tunnell;F. Tonnies;K. Valerius;G. Volta;C. Weinheimer;M. Weiss;D. Wenz;C. Wittweg;Thomas Wolf;V. Wu;Y. Xing;D. Xu;Z. Xu;M. Yamashita;L. Yang;J. Ye;L. Yuan;G. Zavattini;M. Zhong;T. Zhu
  • 通讯作者:
    X. C. E. Aprile;K. Abe;S. A. Maouloud;L. Althueser;B. Andrieu;E. Angelino;J. Angevaare;V. C. Antochi;D. A. Martin;F. Arneodo;L. Baudis;A. Baxter;M. Bazyk;L. Bellagamba;R. Biondi;A. Bismark;E. J. Brookes;A. Brown;S. Bruenner;G. Bruno;R. Budnik;T. Bui;C. Cai;J. Cardoso;D. Cichon;A. P. C. Chavez;A. Colijn;J. Conrad;J. Cuenca-Garc'ia;J. Cussonneau;V. D’Andrea;M. P. Decowski;P. Gangi;S. D. Pede;S. Diglio;K. Eitel;A. Elykov;S. Farrell;A. Ferella;C. Ferrari;H. Fischer;M. Flierman;W. Fulgione;C. Fuselli;P. Gaemers;R. Gaior;A. G. Rosso;M. Galloway;F. Gao;R. Glade-Beucke;L. Grandi;J. Grigat;H. Guan;M. Guida;R. Hammann;A. Higuera;C. Hils;L. Hoetzsch;N. Hood;J. Howlett;M. Iacovacci;Y. Itow;J. Jakob;F. Joerg;A. Joy;N. Kato;M. Kara;P. Kavrigin;S. Kazama;M. Kobayashi;G. Koltman;A. Kopec;F. Kuger;H. Landsman;R. Lang;L. Levinson;I. Li;S. Li;S. Liang;S. Lindemann;M. Lindner;K. Liu;J. Loizeau;F. Lombardi;J. Long;J. Lopes;Y. Ma;C. Macolino;J. Mahlstedt;A. Mancuso;L. Manenti;F. Marignetti;T. Undagoitia;K. Martens;J. Masbou;D. Masson;E. Masson;S. Mastroianni;M. Messina;K. Miuchi;K. Mizukoshi;A. Molinario;S. Moriyama;K. Morra;Y. Mosbacher;M. Murra;J. Muller;K. Ni;U. Oberlack;B. Paetsch;J. Palacio;Q. Pellegrini;R. Peres;C. Peters;J. Pienaar;M. Pierre;V. Pizzella;G. Plante;T. Pollmann;J. Qi;J. Qin;D. R. Garc'ia;R. Singh;L. Sanchez;J. Santos;I. Sarnoff;G. Sartorelli;J. Schreiner;D. Schulte;P. Schulte;H. Eissing;M. Schumann;L. Lavina;M. Selvi;F. Semeria;P. Shagin;S. Shi;E. Shockley;M. Silva;H. Simgen;A. Takeda;P. Tan;A. Terliuk;D. Thers;F. Toschi;G. Trinchero;C. Tunnell;F. Tonnies;K. Valerius;G. Volta;C. Weinheimer;M. Weiss;D. Wenz;C. Wittweg;Thomas Wolf;V. Wu;Y. Xing;D. Xu;Z. Xu;M. Yamashita;L. Yang;J. Ye;L. Yuan;G. Zavattini;M. Zhong;T. Zhu
SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy
  • DOI:
    10.1088/1367-2630/abde33
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Soud Al Kharusi;S. BenZvi;J. Bobowski;W. Bonivento;V. Brdar;T. Brunner;E. Caden;M. Clark;
  • 通讯作者:
    Soud Al Kharusi;S. BenZvi;J. Bobowski;W. Bonivento;V. Brdar;T. Brunner;E. Caden;M. Clark;
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Tunnell其他文献

Energy Reconstruction with Semi-Supervised Autoencoders for Dual-Phase Time Projection Chambers
双相时间投影室的半监督自动编码器的能量重建
  • DOI:
    10.1051/epjconf/202429509022
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ivy Li;Aarón Higuera;Shixiao Liang;Juehang Qin;Christopher Tunnell
  • 通讯作者:
    Christopher Tunnell

Christopher Tunnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Tunnell', 18)}}的其他基金

WoU-MMA: Collaborative Research: A Next-Generation SuperNova Early Warning System for Multimessenger Astronomy
WoU-MMA:合作研究:用于多信使天文学的下一代超新星早期预警系统
  • 批准号:
    2209444
  • 财政年份:
    2022
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Continuation of the XENON Program at LNGS
合作研究:NSF-BSF:LNGS 氙气项目的延续
  • 批准号:
    2112801
  • 财政年份:
    2021
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Continuing Grant
CAREER: Pivoting XENONnT to Neutrinos and Anomaly Resolution
职业:将 XENONnT 转向中微子和异常解决
  • 批准号:
    2046549
  • 财政年份:
    2021
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Continuing Grant
CyberTraining: Implementation: Small: Enabling Dark Matter Discovery through Collaborative Cybertraining
网络培训:实施:小型:通过协作网络培训实现暗物质发现
  • 批准号:
    2017699
  • 财政年份:
    2020
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321044
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了