CAREER: Pore-Scale Multiphase Mass Transfer in Porous Electrodes

职业:多孔电极中的孔隙级多相传质

基本信息

  • 批准号:
    1941083
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The rapidly growing markets for electric vehicle and unmanned aerial vehicle present a pressing need of high-power and high-energy electric supplies. While the lithium-ion battery is reaching its theoretical energy density limit, other technologies such as lithium-air battery, fuel cells, and super capacitors have great potential as the next generation energy storage and energy conversion technologies. The power density and energy density of these electrochemical technologies are often limited by the supply of reactants within porous electrodes. Clear understanding of transport phenomena within the pores is required to rationally design and engineer high-performance electrodes and devices. This project will apply advanced imaging technologies, customized electrode materials, and computational approaches to visualize and reconstruct pore-scale geometries of electrodes and develop new theories and tools to understand multiphase transport phenomena in porous electrodes. Results from this project will advance the development of environmentally friendly electric storage and conversion technologies. Research outcomes will be incorporated into summer camps, local STEM education platforms, and curriculum developments to educate and train local students with diverse backgrounds. The partnership with local industry will also nurture an educated professional workforce in the Kansas's metropolitan areas.Porous electrodes with high specific surface area are widely used in a variety of electrochemical systems such as batteries, fuel cells, super capacitors, flow batteries, and electrolysis technologies to provide sufficient reaction sites for electrochemical reactions. The goal of this project is to fundamentally understand pore-scale multiphase transport phenomena applicable to porous electrodes of electrochemical devices, considering spatial distributions of the solid matrix and filling fluids, and directly address key barriers to improved system-level performance (energy, power, efficiency etc.). In pursuit of the research goal, this project will integrate experiments and simulations to elucidate how the spatial distribution of each phase governs the pore-level multiphase transfer and system-level performance of porous electrodes. The clear understanding of the spatial phase distributions on transport phenomena is particularly important for sustaining performance in devices equipped with electrodes whose pore-size distributions and properties change over time. Fundamental knowledge on multiphase transport phenomena will fill a significant knowledge gap in porous-electrode engineering. Results from this project will directly benefit sustainable electricity production and storage technologies, including Li-ion batteries, metal-air batteries, fuel cells, super capacitors, redox flow batteries, and electrolysis technologies, to move the society toward a more sustainable future. This project is jointly funded by CBET Electrochemical Systems program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
快速增长的电动汽车和无人机市场对大功率、高能量的电源提出了迫切的需求。虽然锂离子电池正在达到其理论能量密度极限,但其他技术如锂空气电池、燃料电池和超级电容器作为下一代能量存储和能量转换技术具有巨大潜力。这些电化学技术的功率密度和能量密度通常受到多孔电极内反应物供应的限制。为了合理地设计和制造高性能的电极和器件,需要清楚地了解孔内的传输现象。该项目将应用先进的成像技术,定制的电极材料和计算方法来可视化和重建电极的孔尺度几何形状,并开发新的理论和工具来理解多孔电极中的多相传输现象。该项目的成果将推动环境友好型电力储存和转换技术的发展。研究成果将被纳入夏令营,当地STEM教育平台和课程开发中,以教育和培训具有不同背景的当地学生。与当地工业的合作还将在堪萨斯的大都市地区培养一支受过教育的专业劳动力队伍。具有高比表面积的多孔电极广泛应用于各种电化学系统,如电池、燃料电池、超级电容器、液流电池和电解技术,为电化学反应提供足够的反应位点。 该项目的目标是从根本上了解适用于电化学设备多孔电极的孔尺度多相传输现象,考虑固体基质和填充流体的空间分布,并直接解决改善系统级性能(能量,功率,效率等)的关键障碍。为了实现研究目标,本项目将结合实验和模拟来阐明每个相的空间分布如何控制多孔电极的孔级多相传输和系统级性能。对传输现象的空间相位分布的清楚理解对于配备有孔径分布和性质随时间变化的电极的设备的持续性能特别重要。多相输运现象的基础知识将填补多孔电极工程中的一个重要知识空白。该项目的成果将直接有利于可持续电力生产和存储技术,包括锂离子电池、金属空气电池、燃料电池、超级电容器、氧化还原液流电池和电解技术,使社会走向更可持续的未来。该项目由CBET电化学系统计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Model of the Potassium-Oxygen Battery and its Application in Cathode Design
钾氧电池模型及其在正极设计中的应用
  • DOI:
    10.1149/1945-7111/ac797d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Küpper, Jannis;Li, Xianglin;Simon, Ulrich
  • 通讯作者:
    Simon, Ulrich
Binder-free Li-O 2 battery cathodes using Ni- and PtRu-coated vertically aligned carbon nanofibers as electrocatalysts for enhanced stability
使用 Ni 和 PtRu 涂层垂直排列碳纳米纤维作为电催化剂以增强稳定性的无粘合剂 Li-O 2 电池阴极
  • DOI:
    10.26599/nre.2023.9120055
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hassan Zaidi, Syed Shoaib;Rajendran, Sabari;Sekar, Archana;Elangovan, Ayyappan;Li, Jun;Li, Xianglin
  • 通讯作者:
    Li, Xianglin
Incorporation of Novel Graphene Nanosheet Materials as Cathode Catalysts in Li–O2 Battery
新型石墨烯纳米片材料作为锂氧气电池阴极催化剂的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianglin Li其他文献

Design, Analysis, and Experimental Test of a Segmented-Rotor High Temperature Superconducting Flux-Switching Generator with Stationary Seal
固定密封分段转子高温超导磁通切换发电机的设计、分析和实验测试
Steam reforming of sugar and its derivatives: Functionality dictates thermal properties and morphologies of coke
糖及其衍生物的蒸汽重整:功能决定焦炭的热性能和形态
  • DOI:
    10.1016/j.fuel.2021.121798
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Xianglin Li;Lijun Zhang;Shu Zhang;Leilei Xu;Xun Hu
  • 通讯作者:
    Xun Hu
Root Colonization by Arbuscular Mycorrhizal Fungi in Plants of Lhalu Wetland
丛枝菌根真菌在拉鲁湿地植物根部定殖
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Gai;Yan Dai;Guizhen Li;He Zhou;Xianglin Li;Yun;Fuyu Yang
  • 通讯作者:
    Fuyu Yang
Effects of Operating Temperature on Li-O2 Battery with Ionic Liquid-Based Binary Electrolyte
工作温度对离子液体二元电解质锂氧气电池的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Zaidi;Rajkumar Kore;M. Shiflett;Xianglin Li
  • 通讯作者:
    Xianglin Li
Evaluation of combined pathological responses in primary tumor and lymph nodes following neoadjuvant chemoimmunotherapy in non-small cell lung cancer.
非小细胞肺癌新辅助化学免疫治疗后原发肿瘤和淋巴结的联合病理反应评估。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Shujie Huang;Junhan Wu;Shaopeng Li;Xianglin Li;Ruijie Zeng;Yong Tang;Jiming Tang;X. Ben;Dong;Liangbao Xie;Hai;Gang Chen;Sichao Wang;Zhen Gao;H. Wu;Rixin Chen;Fangping Xu;G. Qiao
  • 通讯作者:
    G. Qiao

Xianglin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xianglin Li', 18)}}的其他基金

CAREER: Pore-Scale Multiphase Mass Transfer in Porous Electrodes
职业:多孔电极中的孔隙级多相传质
  • 批准号:
    2329821
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
RII Track-4: Pore-Scale Transport Phenomena in Li-O2 Battery Electrodes Characterized by Nano-Tomography
RII Track-4:通过纳米断层扫描表征锂氧电池电极中的孔隙尺度传输现象
  • 批准号:
    1833048
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Mechanistic Understanding of Multi-scale Sintering Behavior Influenced by Anisotropic Particle and Pore Distributions in Extrusion-based Metal Additive Manufacturing
基于挤压的金属增材制造中受各向异性颗粒和孔隙分布影响的多尺度烧结行为的机理理解
  • 批准号:
    2224309
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Enabling CO2 mineralisation through pore to field-scale tracking of carbonate precipitation: INCLUSION
通过碳酸盐沉淀的孔隙到现场规模的跟踪实现二氧化碳矿化:纳入
  • 批准号:
    NE/X014789/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
ERI: Impact of pore-scale heterogeneity on precipitation and transport in porous media
ERI:孔隙尺度非均质性对多孔介质中降水和传输的影响
  • 批准号:
    2301243
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MCA: Geosymbiotic interactions as innovation in Earth and environmental systems: Feedbacks between biological activity, chemical gradients and mineral phases at the pore scale
MCA:地球共生相互作用作为地球和环境系统的创新:生物活性、化学梯度和孔隙尺度矿物相之间的反馈
  • 批准号:
    2322428
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Pore-Scale Multiphase Mass Transfer in Porous Electrodes
职业:多孔电极中的孔隙级多相传质
  • 批准号:
    2329821
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Pore-Scale Geodynamical Modelling
孔隙尺度地球动力学建模
  • 批准号:
    RGPIN-2020-06332
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Freeze-Thaw Cycling in Soft Granular Materials: Revealing the Pore-scale Physics
软颗粒材料的冻融循环:揭示孔隙尺度物理
  • 批准号:
    545606-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Postdoctoral Fellowships
Pore-Scale Geodynamical Modelling
孔隙尺度地球动力学建模
  • 批准号:
    RGPIN-2020-06332
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
EAR-PF Understanding the Effects of Incomplete Mixing on Mixing Corrosion: Pore-scale Visualization and Upscaling
EAR-PF 了解不完全混合对混合腐蚀的影响:孔隙尺度可视化和放大
  • 批准号:
    1952686
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award
Pore-scale machine-learning modeling of flow and transport properties of carbonate rocks
碳酸盐岩流动和输运特性的孔隙尺度机器学习建模
  • 批准号:
    2041648
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了