III: Medium: Design and analysis of experiments on networked populations
III:媒介:网络群体实验的设计和分析
基本信息
- 批准号:1941159
- 负责人:
- 金额:$ 73.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern technology enables the collection and manipulation of detailed digital traces about online and offline social processes, at scale. Apps that run on social media platforms, for instance, provide the opportunity to engage with hundreds of millions of users, within an environment whose parameters for any individual can be specified/changed in response to the behavior of others. Technically, in such applications we often have access to so-called social network information, which is typically not leveraged by existing strategies to design and analyze experiments. Tools for knowledge acquisition and manipulation in such networked systems are key. In particular, algorithmic and statistical strategies to design and analyze experiments that leverage information about connectivity among the components of a system of interest individuals, and can operate at scale, will provide necessary stepping stones for tackling many important open problems and policy questions.This research develops an integrated research and educational program that addresses three key problems: (1) how to remove bias from popular link-tracing algorithms used to acquire data on networked populations; (2) how to design and evaluate new network sampling algorithms that optimize a given objective; and (3) how to design randomized experiments on networked populations that enable the estimation of causal effects, rather than associative effects. It will develop two case studies to demonstrate these tools in practice: (1) A large-scale study of the effects of education and network capital on upward mobility, in the United States and Europe; and (2) An empirical analysis of causal strategies to improve of root-cause analysis of latency in distributed software systems.For further information see the project web site located at: http://www.people.fas.harvard.edu/~airoldi/iis-design_analysis_experiments_networks.html
现代技术能够大规模地收集和操纵有关在线和离线社交过程的详细数字痕迹。例如,在社交媒体平台上运行的应用程序提供了与数亿用户互动的机会,在这种环境中,任何个人的参数都可以根据他人的行为进行指定/更改。从技术上讲,在这样的应用程序中,我们经常可以访问所谓的社交网络信息,而现有的策略通常不会利用这些信息来设计和分析实验。在这种网络系统中,知识获取和操作工具是关键。特别是,设计和分析实验的算法和统计策略将为解决许多重要的开放问题和政策问题提供必要的垫脚石。这项研究开发了一项综合研究和教育计划,解决了三个关键问题:(1)如何消除用于获取网络人口数据的流行链接跟踪算法的偏差;(2)如何设计和评估优化给定目标的新网络抽样算法;(3)如何设计网络人口的随机实验,以估计因果效应,而不是关联效应。它将开发两个案例研究来证明这些工具在实践中:(1)在美国和欧洲的教育和网络资本对向上流动的影响的大规模研究;(2)对因果策略的实证分析,以改善分布式软件系统中延迟的根本原因分析。http://www.people.fas.harvard.edu/~airoldi/iis-design_analysis_experiments_networks.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edoardo Airoldi其他文献
A Network Analysis Model for Disambiguation of Names in Lists
- DOI:
10.1007/s10588-005-3940-3 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Bradley Malin;Edoardo Airoldi;Kathleen M. Carley - 通讯作者:
Kathleen M. Carley
Edoardo Airoldi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edoardo Airoldi', 18)}}的其他基金
CAREER: Quantifying diffusion and dynamics on healthcare, innovation and communication networks
职业:量化医疗保健、创新和通信网络的扩散和动态
- 批准号:
1937978 - 财政年份:2018
- 资助金额:
$ 73.01万 - 项目类别:
Continuing Grant
III: Medium: Design and analysis of experiments on networked populations
III:媒介:网络群体实验的设计和分析
- 批准号:
1409177 - 财政年份:2014
- 资助金额:
$ 73.01万 - 项目类别:
Continuing Grant
16th Meeting of New Researchers in Statistics and Probability, July 31- August 2, 2014
第十六次统计与概率新研究者会议,2014年7月31日至8月2日
- 批准号:
1418827 - 财政年份:2014
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
CAREER: Quantifying diffusion and dynamics on healthcare, innovation and communication networks
职业:量化医疗保健、创新和通信网络的扩散和动态
- 批准号:
1149662 - 财政年份:2012
- 资助金额:
$ 73.01万 - 项目类别:
Continuing Grant
Collaborative proposal: Statistical methods for analyzing complexity and growth of large biological and information networks
合作提案:分析大型生物和信息网络复杂性和增长的统计方法
- 批准号:
1106980 - 财政年份:2011
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
III: Small: Representation, Modeling and Inference for Large Biological and Information Networks
III:小型:大型生物和信息网络的表示、建模和推理
- 批准号:
1017967 - 财政年份:2010
- 资助金额:
$ 73.01万 - 项目类别:
Continuing Grant
Collaborative Research: Models for Network Evolution: A Study of Growth and Structure in the Wikipedia
协作研究:网络进化模型:维基百科中的增长和结构研究
- 批准号:
0907009 - 财政年份:2009
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2402311 - 财政年份:2023
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312931 - 财政年份:2023
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2245158 - 财政年份:2022
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2211491 - 财政年份:2022
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2211489 - 财政年份:2022
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2211492 - 财政年份:2022
- 资助金额:
$ 73.01万 - 项目类别:
Standard Grant
III: Medium: Design and analysis of experiments on networked populations
III:媒介:网络群体实验的设计和分析
- 批准号:
1409177 - 财政年份:2014
- 资助金额:
$ 73.01万 - 项目类别:
Continuing Grant