EAGER: Collaborative Research: World Modeling for Natural Language Understanding
EAGER:协作研究:自然语言理解的世界建模
基本信息
- 批准号:1941178
- 负责人:
- 金额:$ 22.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A key goal of artificial intelligence (AI) is to build systems that can read and understand language as humans do. This capability underlies a broad range of technologies, including question answering, machine translation, and dialogue systems. While progress has been made, AI systems currently lack the robustness and flexibility of human language understanding---typical systems leverage shallow pattern-matching strategies to perform tasks, and as a result are only effective at the specific tasks they are built for, and fail easily even within those settings. This project addresses these issues by improving the ability of systems to construct rich representations of the "world" described in text: Who are the entities involved, and what are their attributes and relationships? What events are taking place, who is participating in those events, and why are they occurring? The design of the systems' notion of a world uses concepts like these that have been identified by cognitive scientists and psychologists as fundamental in human language understanding. The expected benefit of this work is the development of AI systems that can use language flexibly and robustly because, like humans, these systems will perform tasks based on the core information conveyed in language, rather than superficial pattern-matching. In addition to improving systems, this project will have the benefit of building bridges between the AI community and cognitive scientists, psychologists, and linguists---the project's modeling framework provides a pathway through which insights from cognitive science can be translated to model implementation, which can be utilized both for improvement of AI systems and for testing of cognitive hypotheses. This exploratory EAGER project improves the capacity of systems to automatically construct the world underlying the text being analyzed, and designs targeted probing tasks to enable fine-grained assessment of the extent to which systems have captured this information. The modeling framework uses memory-augmented neural networks, leveraging the external memory components to represent worlds. Rather than explicit annotation, the project implements cognitively-inspired design of both world components themselves and inductive bias for encouraging particular components to capture what is intended. Learning is carried out via self-supervised objectives and auxiliary supervision on large datasets of narratives. System evaluation consists of both standard reading comprehension question answering tasks and the development of novel probing tasks. The use of controlled probing tasks draws critically from methodological approaches used in cognitive neuroscience and psycholinguistics, applying these scientific methods for interpretation of artificial systems. These probing tasks allow for targeted analysis of individual world components and provide guidance for model improvement. The methodology of the project iterates between model design and targeted testing via probing tasks, using the results of the latter to guide the former.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 的一个关键目标是构建能够像人类一样阅读和理解语言的系统。这种能力是一系列技术的基础,包括问答、机器翻译和对话系统。尽管取得了进步,但人工智能系统目前缺乏人类语言理解的稳健性和灵活性——典型的系统利用浅层模式匹配策略来执行任务,因此仅对它们所构建的特定任务有效,即使在这些设置中也很容易失败。该项目通过提高系统构建文本中描述的“世界”的丰富表示的能力来解决这些问题:涉及的实体是谁,它们的属性和关系是什么?正在发生哪些事件,谁参与了这些事件,以及为什么发生这些事件?系统世界概念的设计使用了诸如此类的概念,这些概念已被认知科学家和心理学家认为是人类语言理解的基础。这项工作的预期好处是开发能够灵活、稳健地使用语言的人工智能系统,因为像人类一样,这些系统将根据语言传达的核心信息来执行任务,而不是表面的模式匹配。除了改进系统之外,该项目还将有利于在人工智能社区与认知科学家、心理学家和语言学家之间架起桥梁——该项目的建模框架提供了一条途径,通过该途径,认知科学的见解可以转化为模型实施,这既可以用于改进人工智能系统,也可以用于测试认知假设。这个探索性的 EAGER 项目提高了系统自动构建所分析文本背后的世界的能力,并设计了有针对性的探测任务,以便能够对系统捕获此信息的程度进行细粒度评估。该建模框架使用记忆增强神经网络,利用外部记忆组件来表示世界。该项目不是明确的注释,而是对世界组件本身实施认知启发的设计,并采用归纳偏差来鼓励特定组件捕获预期内容。学习是通过自我监督目标和对大型叙述数据集的辅助监督来进行的。系统评估包括标准阅读理解问答任务和新颖的探究任务的开发。受控探测任务的使用严格借鉴了认知神经科学和心理语言学中使用的方法论,应用这些科学方法来解释人工系统。这些探测任务可以对各个世界组件进行有针对性的分析,并为模型改进提供指导。该项目的方法通过探测任务在模型设计和有针对性的测试之间进行迭代,利用后者的结果来指导前者。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Ignore: Long Document Coreference with Bounded Memory Neural Networks
- DOI:10.18653/v1/2020.emnlp-main.685
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Shubham Toshniwal;Sam Wiseman;Allyson Ettinger;Karen Livescu;Kevin Gimpel
- 通讯作者:Shubham Toshniwal;Sam Wiseman;Allyson Ettinger;Karen Livescu;Kevin Gimpel
Chess as a Testbed for Language Model State Tracking
国际象棋作为语言模型状态跟踪的测试平台
- DOI:10.1609/aaai.v36i10.21390
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Toshniwal, Shubham;Wiseman, Sam;Livescu, Karen;Gimpel, Kevin
- 通讯作者:Gimpel, Kevin
Reconsidering the Past: Optimizing Hidden States in Language Models
- DOI:10.18653/v1/2021.findings-emnlp.346
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Davis Yoshida;Kevin Gimpel
- 通讯作者:Davis Yoshida;Kevin Gimpel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Gimpel其他文献
Logical Fallacy Detection
逻辑谬误检测
- DOI:
10.18653/v1/2022.findings-emnlp.532 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Akbik;Tanja Bergmann;Duncan Blythe;Kashif;Stefan Rasul;Schweter Roland;Vollgraf;Tom B. Brown;Benjamin Mann;Nick Ryder;Jared D Subbiah;Prafulla Kaplan;A. Dhariwal;P. Neelakantan;Girish Shyam;Amanda Sastry;Sandhini Askell;Ariel Agarwal;Herbert;Gretchen Krueger;T. Henighan;R. Child;Aditya Ramesh;Daniel M. Ziegler;Jeffrey Wu;Clemens Winter;Chris Hesse;Mark Chen;Mateusz Sigler;Scott Litwin;Benjamin Gray;Chess;Alec Radford;I. Sutskever;Kevin Clark;Minh;Quoc V. Le;Giovanni Da;San Martino;Alberto Barrón;Simona C Kaplan;A. Morrison;Thomas M Goldin;Richard G Olino;Heimberg;Lev Konstantinovskiy;Oliver Price;Mevan Babakar;Zhenzhong Lan;Mingda Chen;Sebastian Goodman;Kevin Gimpel;Piyush Sharma;Radu Soricut;Yuhao Peng Qi;Yuhui Zhang;Jason Zhang;Bolton;D. Luan - 通讯作者:
D. Luan
Learning Probabilistic Sentence Representations from Paraphrases
从释义中学习概率句子表示
- DOI:
10.18653/v1/2020.repl4nlp-1.3 - 发表时间:
2020 - 期刊:
- 影响因子:10.9
- 作者:
Mingda Chen;Kevin Gimpel - 通讯作者:
Kevin Gimpel
Emergent Logical Structure in Vector Representations of Neural Readers
神经阅读器向量表示中的涌现逻辑结构
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hai Wang;Takeshi Onishi;Kevin Gimpel;David A. McAllester - 通讯作者:
David A. McAllester
Word Salad: Relating Food Prices and Descriptions
单词沙拉:相关食品价格和描述
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Victor Chahuneau;Kevin Gimpel;Bryan R. Routledge;Lily Scherlis;Noah A. Smith - 通讯作者:
Noah A. Smith
Visible Progress on Adversarial Images and a New Saliency Map
对抗性图像和新显着图的明显进展
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Dan Hendrycks;Kevin Gimpel - 通讯作者:
Kevin Gimpel
Kevin Gimpel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 22.61万 - 项目类别:
Standard Grant














{{item.name}}会员




