CAREER: A Versatile Quantum Simulator for Fermionic Ordering

职业:费米子有序的多功能量子模拟器

基本信息

  • 批准号:
    1941985
  • 负责人:
  • 金额:
    $ 74.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This CAREER award supports the development of a novel and versatile “quantum simulator” aimed at better understanding the properties of solid materials. In addition to attributes like density and elasticity, materials have properties such as electrical conductivity and magnetism that result from the fundamentally quantum mechanical behavior of the dense gas of electrons holding the atoms together. Some of the wide variety of complex and technologically important properties of materials, such as superconductivity and magnetism, can only be understood using quantum theory. Unfortunately, the centrality of quantum mechanics to these properties means that simulating them with classical computation devices is either ineffective or inefficient. This award supports an alternative approach, wherein the awardee and his students are developing a simulator capable of modeling the underlying physics of materials using the quantum properties of atoms. In order to bring out the quantum effects in lithium atoms, they need to simultaneously cool the atoms to within one millionth of a degree above absolute zero and cause them to act like a solid material. Students will use one set of lasers to slow the atoms down to achieve the cooling, and another set of lasers to pin them in place. Critical to this award, scientists, including the awardee, have developed a technique to shake the pinned atoms, which coerces them into emulating a much larger range of materials than previously possible. This award will further scientific insight into materials of technological relevance, as well as support a new generation of students in understanding quantum interactions. In addition to supporting the training of graduate students, the award supports high school students and teachers from the Atlanta area to work in the lab over the summer on mechanical and electronic (“mechatronic”) automation tools to increase lab productivity. The skills and knowledge of state-of-the-art laboratory set up acquired will be used to develop similar tools for the high school physics lab.This award supports a novel approach to quantum simulation of materials using laser cooled, ultra-cold lithium. Many of the details of debated importance in materials relate to the Fermi surface, where the conduction electrons live. The project will employ shaken optical lattices, which allow a great degree of control over the shape of the Fermi surface. Thereby, the Fermi surface will be tuned to favor or disfavor certain types of order. Important questions about how these different forms of order can compete or co-exist can be answered, and create complex phase diagrams generated from a well understood microscope model that can be directly compared with theory. The project team will use resonant optical lattice shaking in a gas of ultracold lithium atoms to tune the Fermi surface shape. The project goals include facilitating interactions with significant momentum dependence, demonstrating two merging Fermi surfaces at a neck closing (Lifshitz) transition, and creating models of nesting-driven density wave formation in a “clean” scenario where no lattice phonon modes exist to provide an alternate mechanism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持开发一种新颖而多功能的“量子模拟器”,旨在更好地了解固体材料的性质。除了密度和弹性等属性外,材料还具有导电性和磁性等属性,这些属性来自于将原子保持在一起的致密电子气体的基本量子力学行为。材料的一些复杂和技术上重要的性质,如超导性和磁性,只能用量子理论来理解。不幸的是,量子力学对这些性质的中心地位意味着用经典计算设备模拟它们要么是无效的,要么是低效的。该奖项支持另一种方法,其中获奖者和他的学生正在开发一种模拟器,能够使用原子的量子特性对材料的基本物理进行建模。为了在锂原子中产生量子效应,他们需要同时将原子冷却到绝对零度以上百万分之一度以内,并使它们像固体材料一样工作。学生将使用一组激光器来减慢原子的速度以实现冷却,另一组激光器将它们固定在适当的位置。对于这个奖项至关重要的是,包括获奖者在内的科学家们已经开发出一种技术来摇动被钉扎的原子,迫使它们模拟比以前可能的更大范围的材料。该奖项将进一步科学洞察技术相关的材料,以及支持新一代的学生在理解量子相互作用。除了支持研究生的培训外,该奖项还支持亚特兰大地区的高中生和教师在夏天在实验室中使用机械和电子(“机电一体化”)自动化工具,以提高实验室的生产力。所获得的最先进的实验室的技能和知识将用于为高中物理实验室开发类似的工具。该奖项支持使用激光冷却的超冷锂进行材料量子模拟的新方法。材料中许多有争议的重要细节都与费米面有关,费米面是传导电子的所在。该项目将采用振动光学晶格,这使得费米表面的形状得到很大程度的控制。因此,费米面将被调整以有利于或不利于某些类型的秩序。关于这些不同形式的秩序如何竞争或共存的重要问题可以得到回答,并从一个可以直接与理论进行比较的很好理解的显微镜模型中生成复杂的相图。该项目团队将使用超冷锂原子气体中的共振光学晶格振动来调整费米表面形状。该项目的目标包括促进相互作用与显着的动量依赖,展示两个合并的费米面在颈部关闭(Lifshitz)过渡,并在一个“干净”的环境中建立嵌套驱动密度波形成的模型,不存在晶格声子模式来提供替代机制的情况。该奖项反映了NSF的法定使命,并且通过使用基金会知识分子的评估被认为值得支持优点和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Instability and momentum bifurcation of a molecular Bose-Einstein condensate in a shaken lattice with exotic dispersion
具有奇异色散的振动晶格中分子玻色-爱因斯坦凝聚态的不稳定性和动量分岔
  • DOI:
    10.1103/physreva.108.l051302
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang, Kaiyue;Xiong, Feng;Long, Yun;Ma, Yun;Parker, Colin V.
  • 通讯作者:
    Parker, Colin V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Parker其他文献

Spatial modulations of electronic states in the pseudogap phase of cuprates : ordering or interference?
铜酸盐赝能隙相中电子态的空间调制:有序还是干扰?
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hashisaka;et. al.;Colin Parker
  • 通讯作者:
    Colin Parker

Colin Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Parker', 18)}}的其他基金

Submerged-Shell Atoms Trapped in Noble Gas Solids for Quantum Information and Measurement
捕获在稀有气体固体中的水下壳原子用于量子信息和测量
  • 批准号:
    2310394
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Standard Grant

相似海外基金

A versatile multi-project cleanroom fabrication process for superconducting quantum circuits
用于超导量子电路的多功能多项目洁净室制造工艺
  • 批准号:
    576748-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Alliance Grants
STTR Phase II: Versatile Low-Noise Traveling-Wave Parametric Amplifier for Quantum Information Processing
STTR 第二阶段:用于量子信息处理的多功能低噪声行波参量放大器
  • 批准号:
    2025848
  • 财政年份:
    2021
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Versatile Low-Noise Traveling-Wave Parametric Amplifier for Quantum Information Processing
SBIR 第一阶段:用于量子信息处理的多功能低噪声行波参量放大器
  • 批准号:
    1843017
  • 财政年份:
    2019
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Standard Grant
Efficient and Versatile Fiber-based Quantum Photonic Sources
高效且多功能的基于光纤的量子光子源
  • 批准号:
    RGPIN-2014-06425
  • 财政年份:
    2018
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and Versatile Fiber-based Quantum Photonic Sources**
高效且多功能的基于光纤的量子光子源**
  • 批准号:
    462021-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Efficient and Versatile Fiber-based Quantum Photonic Sources
高效且多功能的基于光纤的量子光子源
  • 批准号:
    RGPIN-2014-06425
  • 财政年份:
    2017
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a Versatile Three-Colour Femtosecond Field Synthesizer for Quantum Applications
面向量子应用的多功能三色飞秒场合成器
  • 批准号:
    1992304
  • 财政年份:
    2017
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Studentship
Efficient and Versatile Fiber-based Quantum Photonic Sources
高效且多功能的基于光纤的量子光子源
  • 批准号:
    RGPIN-2014-06425
  • 财政年份:
    2016
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and Versatile Fiber-based Quantum Photonic Sources
高效且多功能的基于光纤的量子光子源
  • 批准号:
    462021-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Versatile Quantum Multiplexing
多功能量子复用
  • 批准号:
    EP/M009505/1
  • 财政年份:
    2015
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了