EAGER: Collaborative Research: Consequences of Co-Adsorbed Chlorine on Surface Dynamics and Selectivity in Ethylene Epoxidation on Silver Catalysts

EAGER:合作研究:共吸附氯对银催化剂上乙烯环氧化反应的表面动力学和选择性的影响

基本信息

  • 批准号:
    1942072
  • 负责人:
  • 金额:
    $ 9.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

Ethylene epoxide (EO) is a major commodity chemical used in the production of materials, industrial solutions, surfactants and consumer goods. EO is manufactured via a catalytic reaction between ethylene and oxygen gas utilizing highly complex catalysts that have evolved over the years primarily through industrial research involving experimental screening of a large array of catalytic, promoter, and stabilizing materials. While those efforts have led to high-performing catalysts containing five or more promoting materials, there remains significant opportunity to improve the catalyst technology. State-of-the art theory, machine learning, spectroscopic and reaction analysis methods will be combined to better understand the role of chlorine, one of the key promoting elements, and identify opportunities for increasing its effectiveness. Higher-performing EO catalysts would improve process energy efficiency, reduce emissions, and promote U.S. competitiveness in a chemical market sector that accounted for $45B in 2016. Among the many different combinations of promoters reported in commercial EO catalysts, chlorine (Cl) is the most ubiquitous promoter, and its addition to an otherwise unmodified silver (Ag) catalyst leads to the greatest increase in selectivity to EO. Reactant and promoter-induced surface dynamics and reconstruction have long been known to play a critical role in many catalytic reactions. The study combines catalyst synthesis, spectroscopic characterization, reactivity testing, and machine-learning enhanced molecular simulations, to explore the dynamic nature of the Cl-promoted Ag surface under reaction conditions. The bottom-up approach to synthesis and characterization yields itself to several opportunities for reconciling conflicting spectroscopic assignments in the literature, mechanistic proposals for this system, and hypotheses for the mode of action of Cl through the combination of cutting-edge computational and experimental methods. Specifically, the study will utilize efficient computational approaches for modeling dynamic evolution of systems with high configurational complexity. Time-averaged simulated Raman spectra derived from molecular dynamics simulations will be used in conjunction with multi-variate curve resolution of experimental Raman spectra to make molecularly precise assignments for different surface oxygen species and the influence of Cl on their structure. The transient behavior of these systems will also be tied to observations at steady-state operation at conditions relevant for industrial systems. The collaborative nature of the project will provide opportunities for cross-exposure of graduate students from the two research groups to theoretical and experimental methods, thereby teaching skills for effective research collaboration. The methodologies developed in the research and their application will be integrated into graduate courses taught by the co-investigators to demonstrate the importance of embracing complexity of catalytic systems, even within fundamental studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
环氧乙烷(EO)是一种主要的商品化学品,用于生产材料、工业解决方案、表面活性剂和消费品。EO是通过乙烯和氧气之间的催化反应制造的,利用高度复杂的催化剂,这些催化剂经过多年的工业研究,主要是通过对大量催化、促进剂和稳定材料的实验筛选而发展起来的。虽然这些努力已经产生了含有五种或更多促进材料的高性能催化剂,但仍有很大的机会改进催化剂技术。将结合最先进的理论,机器学习,光谱和反应分析方法,以更好地了解氯的作用,氯是关键的促进因素之一,并确定提高其有效性的机会。高性能EO催化剂将提高过程能源效率,减少排放,并提高美国在化工市场领域的竞争力,2016年美国化工市场的规模为450亿美元。在商业EO催化剂中报道的许多不同的启动子组合中,氯(Cl)是最普遍存在的启动子,并且将其添加到未经改性的银(Ag)催化剂上导致EO选择性的最大增加。反应物和促进剂诱导的表面动力学和重建在许多催化反应中起着至关重要的作用。该研究结合催化剂合成、光谱表征、反应性测试和机器学习增强的分子模拟,探索反应条件下cl促进银表面的动态性质。自下而上的合成和表征方法为调和文献中相互冲突的光谱分配、该系统的机制建议以及通过结合尖端计算和实验方法对Cl的作用模式的假设提供了几个机会。具体而言,该研究将利用高效的计算方法来模拟具有高配置复杂性的系统的动态演化。从分子动力学模拟中得到的时间平均模拟拉曼光谱将与实验拉曼光谱的多变量曲线分辨率结合使用,对不同表面氧的分子精确分配以及Cl对其结构的影响。这些系统的瞬态行为也将与在工业系统相关条件下的稳态运行观察相联系。该项目的合作性质将为两个研究小组的研究生提供交叉接触理论和实验方法的机会,从而教授有效研究合作的技能。研究中开发的方法及其应用将整合到共同研究者教授的研究生课程中,以展示拥抱催化系统复杂性的重要性,即使在基础研究中也是如此。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dioxygen Activation Kinetics over Distinct Cu Site Types in Cu-Chabazite Zeolites
  • DOI:
    10.1021/acscatal.1c03471
  • 发表时间:
    2021-09-10
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Bregante, Daniel T.;Wilcox, Laura N.;Flaherty, David W.
  • 通讯作者:
    Flaherty, David W.
Computational and experimental insights into reactive forms of oxygen species on dynamic Ag surfaces under ethylene epoxidation conditions
  • DOI:
    10.1016/j.jcat.2021.11.031
  • 发表时间:
    2022-01-13
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Liu, Changming;Wijewardena, Devinda P.;Paolucci, Christopher
  • 通讯作者:
    Paolucci, Christopher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Paolucci其他文献

Chris Paolucci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Paolucci', 18)}}的其他基金

CAREER: Cation and Nanoparticle Interconversion in Metal-Exchanged Zeolites
职业:金属交换沸石中的阳离子和纳米颗粒相互转化
  • 批准号:
    2144174
  • 财政年份:
    2022
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Catalyst Structure, Reaction Mechanism, and Roles of Chlorine for Ethylene Epoxidation
合作研究:乙烯环氧化催化剂结构、反应机理和氯的作用
  • 批准号:
    2132622
  • 财政年份:
    2022
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了