CAREER: Information-Theoretic and Statistical Foundations of Generative Models

职业:生成模型的信息理论和统计基础

基本信息

  • 批准号:
    1942230
  • 负责人:
  • 金额:
    $ 58.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Generative machine learning models provide a statistical understanding of data and play an important role in the success of modern machine learning in various application domains including vision, speech, natural languages, and computational biology, among others. Building on the success of deep learning, recent advances in modern generative models hold great promise in revolutionizing various learning methods. Despite this progress, the understanding of some fundamental aspects of these models, required for characterizing their performance guarantees, is still in its infancy. This project aims to elucidate statistical and computational properties of modern generative models by leveraging tools and concepts from information theory, statistics and optimization. This project also includes a comprehensive plan to integrate the research results into an inclusive, diverse and cross-disciplinary educational program at the high school, undergraduate and graduate levels. The overall goal of the research program is to develop a comprehensive and fundamental understanding of the intertwined statistical and computational aspects of modern generative models such as Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs). This project aims to make critical advances in proper formulations of generative models for high dimensional distributions, characterizing statistical limits of these models, and developing efficient computational approaches for solving optimization problems involved during their training. This cross-disciplinary project broadens the scope of the prior knowledge on the interplay between information theory and machine learning and creates a tightly connected loop between theory, algorithms and applications in data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生成式机器学习模型提供了对数据的统计理解,并在现代机器学习在各种应用领域(包括视觉、语音、自然语言和计算生物学等)的成功中发挥着重要作用。在深度学习成功的基础上,现代生成模型的最新进展在革新各种学习方法方面具有巨大的潜力。尽管取得了这一进展,这些模型的一些基本方面的理解,需要表征其性能保证,仍然处于起步阶段。该项目旨在通过利用信息论,统计学和优化的工具和概念来阐明现代生成模型的统计和计算特性。该项目还包括一个全面的计划,将研究成果纳入高中,本科和研究生阶段的包容性,多样性和跨学科的教育计划。该研究计划的总体目标是对现代生成模型(如生成对抗网络(GAN)和变分自动编码器(VAE))的统计和计算方面的相互交织有一个全面和基本的理解。该项目旨在为高维分布的生成模型的适当配方,表征这些模型的统计限制,并开发有效的计算方法来解决其训练过程中涉及的优化问题。这个跨学科的项目拓宽了信息理论和机器学习之间相互作用的现有知识的范围,并在数据科学的理论、算法和应用之间建立了一个紧密联系的循环。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(65)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Interpretable Subspaces in Image Representations
  • DOI:
    10.48550/arxiv.2307.10504
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kalibhat;S. Bhardwaj;Bayan Bruss;Hamed Firooz;Maziar Sanjabi;S. Feizi
  • 通讯作者:
    N. Kalibhat;S. Bhardwaj;Bayan Bruss;Hamed Firooz;Maziar Sanjabi;S. Feizi
CUDA: Convolution-Based Unlearnable Datasets
Policy Smoothing for Provably Robust Reinforcement Learning
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aounon Kumar;Alexander Levine;S. Feizi
  • 通讯作者:
    Aounon Kumar;Alexander Levine;S. Feizi
Run-Off Election: Improved Provable Defense against Data Poisoning Attacks
  • DOI:
    10.48550/arxiv.2302.02300
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keivan Rezaei;Kiarash Banihashem;A. Chegini;S. Feizi
  • 通讯作者:
    Keivan Rezaei;Kiarash Banihashem;A. Chegini;S. Feizi
Adversarial Robustness of Flow-Based Generative Models
基于流的生成模型的对抗鲁棒性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soheil Feizi其他文献

Soheil Feizi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soheil Feizi', 18)}}的其他基金

I-Corps: A Software Platform to Customize, Inspect and Improve Artificial Intelligence (AI) Systems
I-Corps:用于定制、检查和改进人工智能 (AI) 系统的软件平台
  • 批准号:
    2341135
  • 财政年份:
    2023
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Understanding Robustness via Parsimonious Structures.
合作研究:CIF:中:通过简约结构了解鲁棒性。
  • 批准号:
    2212458
  • 财政年份:
    2022
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
  • 批准号:
    2239375
  • 财政年份:
    2023
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
  • 批准号:
    2140775
  • 财政年份:
    2021
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: Information Theoretic Methods in Data Structures
职业:数据结构中的信息论方法
  • 批准号:
    1844887
  • 财政年份:
    2019
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Foundations of Fairness in Machine Learning
职业:机器学习公平性的信息理论基础
  • 批准号:
    1845852
  • 财政年份:
    2019
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: Communication- Efficient Distributed Computation: Information- Theoretic Foundations and Algorithms
职业:通信高效分布式计算:信息理论基础和算法
  • 批准号:
    1651492
  • 财政年份:
    2017
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Methods for RNA Analytics
职业:RNA 分析的信息理论方法
  • 批准号:
    1651236
  • 财政年份:
    2017
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: An Information Theoretic Perspective of Consistent Distributed Storage Systems
职业:一致分布式存储系统的信息论视角
  • 批准号:
    1553248
  • 财政年份:
    2016
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
CAREER: An Information-Theoretic Approach to Communication-Constrained Statistical Learning
职业:通信受限统计学习的信息论方法
  • 批准号:
    1254041
  • 财政年份:
    2013
  • 资助金额:
    $ 58.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了