CAREER: Information-Theoretic and Statistical Foundations of Generative Models
职业:生成模型的信息理论和统计基础
基本信息
- 批准号:1942230
- 负责人:
- 金额:$ 58.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Generative machine learning models provide a statistical understanding of data and play an important role in the success of modern machine learning in various application domains including vision, speech, natural languages, and computational biology, among others. Building on the success of deep learning, recent advances in modern generative models hold great promise in revolutionizing various learning methods. Despite this progress, the understanding of some fundamental aspects of these models, required for characterizing their performance guarantees, is still in its infancy. This project aims to elucidate statistical and computational properties of modern generative models by leveraging tools and concepts from information theory, statistics and optimization. This project also includes a comprehensive plan to integrate the research results into an inclusive, diverse and cross-disciplinary educational program at the high school, undergraduate and graduate levels. The overall goal of the research program is to develop a comprehensive and fundamental understanding of the intertwined statistical and computational aspects of modern generative models such as Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs). This project aims to make critical advances in proper formulations of generative models for high dimensional distributions, characterizing statistical limits of these models, and developing efficient computational approaches for solving optimization problems involved during their training. This cross-disciplinary project broadens the scope of the prior knowledge on the interplay between information theory and machine learning and creates a tightly connected loop between theory, algorithms and applications in data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生成的机器学习模型提供了对数据的统计理解,并在现代机器学习在各种应用领域的成功中起着重要作用,包括视觉,语音,自然语言和计算生物学等。基于深度学习的成功,现代生成模型的最新进展在革新各种学习方法方面具有巨大的希望。尽管取得了这种进步,但对这些模型的某些基本方面的理解仍处于起步阶段。该项目旨在通过利用信息理论,统计和优化的工具和概念来阐明现代生成模型的统计和计算特性。该项目还包括一项综合计划,将研究结果整合到高中,本科和研究生级别的包容性,多样化和跨学科的教育计划中。该研究计划的总体目标是对现代生成模型(例如生成对抗网络(GAN)(GAN))和变异自动编码器(VAES)等现代生成模型的统计和计算方面进行全面和基本的了解。该项目旨在在适当的生成模型中为高维分布的适当表述,表征这些模型的统计限制,并开发有效的计算方法,以解决培训期间涉及的优化问题。这个跨学科的项目扩大了有关信息理论与机器学习之间相互作用的先验知识的范围,并在数据科学中的理论,算法和应用之间建立了紧密相关的环节。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的知识和宽广的影响来通过评估来评估的,并被认为是值得的。
项目成果
期刊论文数量(65)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CUDA: Convolution-Based Unlearnable Datasets
- DOI:10.1109/cvpr52729.2023.00376
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Vinu Sankar Sadasivan;M. Soltanolkotabi;S. Feizi
- 通讯作者:Vinu Sankar Sadasivan;M. Soltanolkotabi;S. Feizi
Identifying Interpretable Subspaces in Image Representations
- DOI:10.48550/arxiv.2307.10504
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:N. Kalibhat;S. Bhardwaj;Bayan Bruss;Hamed Firooz;Maziar Sanjabi;S. Feizi
- 通讯作者:N. Kalibhat;S. Bhardwaj;Bayan Bruss;Hamed Firooz;Maziar Sanjabi;S. Feizi
Policy Smoothing for Provably Robust Reinforcement Learning
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Aounon Kumar;Alexander Levine;S. Feizi
- 通讯作者:Aounon Kumar;Alexander Levine;S. Feizi
Text-To-Concept (and Back) via Cross-Model Alignment
- DOI:10.48550/arxiv.2305.06386
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Mazda Moayeri;Keivan Rezaei;Maziar Sanjabi;S. Feizi
- 通讯作者:Mazda Moayeri;Keivan Rezaei;Maziar Sanjabi;S. Feizi
Sample Efficient Detection and Classification of Adversarial Attacks via Self-Supervised Embeddings
- DOI:10.1109/iccv48922.2021.00758
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Mazda Moayeri;S. Feizi
- 通讯作者:Mazda Moayeri;S. Feizi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soheil Feizi其他文献
Soheil Feizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soheil Feizi', 18)}}的其他基金
I-Corps: A Software Platform to Customize, Inspect and Improve Artificial Intelligence (AI) Systems
I-Corps:用于定制、检查和改进人工智能 (AI) 系统的软件平台
- 批准号:
2341135 - 财政年份:2023
- 资助金额:
$ 58.97万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Understanding Robustness via Parsimonious Structures.
合作研究:CIF:中:通过简约结构了解鲁棒性。
- 批准号:
2212458 - 财政年份:2022
- 资助金额:
$ 58.97万 - 项目类别:
Standard Grant
相似国自然基金
基于证据理论的非完备信息度量及融合方法研究
- 批准号:62301439
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂多重先验信息的试验设计理论与应用研究
- 批准号:12361053
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
钛合金SLM成形热致微失稳体多源信息驱动无损感知理论与方法研究
- 批准号:52305594
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新一代信息技术的复杂油气储层地震勘探理论和方法
- 批准号:42330801
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
抗信息交互不确定性的高实时无人机集群协同理论与方法研究
- 批准号:62371086
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
$ 58.97万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 58.97万 - 项目类别:
Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
- 批准号:
2239375 - 财政年份:2023
- 资助金额:
$ 58.97万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
- 批准号:
2140775 - 财政年份:2021
- 资助金额:
$ 58.97万 - 项目类别:
Continuing Grant
CAREER: Information Theoretic Methods in Data Structures
职业:数据结构中的信息论方法
- 批准号:
1844887 - 财政年份:2019
- 资助金额:
$ 58.97万 - 项目类别:
Continuing Grant