CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
基本信息
- 批准号:2339686
- 负责人:
- 金额:$ 54.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2029-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to enable machine learning (ML) to be trustworthy. ML, especially deep learning that uses deep neural networks, has made remarkable breakthroughs in various research domains and disciplines including computer vision, natural language processing, biology, and math, to name a few. However, in the past decade, extensive work has shown ML models are vulnerable to privacy and security attacks. For example, email spam filters can be compromised by data poisoning attacks, where attackers confuse ML models by feeding them bogus data, allowing adversaries to send malicious emails containing malware or other security threats without being noticed. Attackers can also make repeated requests to models, looking at the results in order to reconstruct the data used to build ML models; in health domains, for instance, successful data reconstruction attacks might expose private medical details about patients. Many defense methods have been proposed to mitigate these attacks, but they face several limitations: they often aren’t effective in real-world applications with strict confidentiality requirements, or unacceptably degrade the performance of the models. Further, most defenses are aimed at particular learning methods or attack types, making it hard to deal with multiple concurrent attacks, and generalizing poorly to different types of models and data. This project’s goal is to address these limitations by designing a trustworthy learning framework based on information theory. The outcomes of the project will advance the state-of-the-art trustworthy ML and information-theoretic approaches to privacy, while contributing to the growing national need for professionals in ML and cybersecurity.To do this, the team will design a practical, accurate, flexible, and generalizable information-theoretic trustworthy representation learning framework with robustness and privacy guarantees. The work will be structured around three thrusts. Thrust 1 will design novel information-theoretic representation learning methods against common privacy attacks, including membership inference, property inference, and data reconstruction attacks. Thrust 2 will design novel information-theoretic representation learning methods against common security attacks, including test-time evasion attacks, training-time poisoning attacks, and training- and test-time backdoor attacks. Thrust 3 will generalize Thrust 1 and Thrust 2 to handle diverse attack types (e.g., multiple privacy/security attacks or their combination), data types (e.g., spatial-temporal data, multimodal data), and learning types (e.g., federated learning, graph learning, self-supervised learning). The proposed framework will be evaluated on datasets and learning tasks from several domains, including computer vision, natural language processing, multimedia, and networking. The team will develop an open-source toolkit to make the techniques widely available to other researchers in academia, industry, and government. Outreach and educational activities, including summer camps, talks, lectures, tutorials, and workshops, will promote the participation of K-12, undergraduate, and graduate students, with a focus on providing opportunities for people from groups underrepresented in STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是使机器学习(ML)变得值得信赖。机器学习,尤其是使用深度神经网络的深度学习,已经在各个研究领域和学科取得了显著的突破,包括计算机视觉、自然语言处理、生物学和数学等。然而,在过去的十年中,大量的工作表明ML模型容易受到隐私和安全攻击。例如,电子邮件垃圾邮件过滤器可能会受到数据中毒攻击的危害,攻击者通过向ML模型提供虚假数据来混淆ML模型,从而允许对手发送包含恶意软件或其他安全威胁的恶意电子邮件而不被注意到。攻击者还可以对模型进行重复请求,查看结果以重建用于构建ML模型的数据;例如,在健康领域,成功的数据重建攻击可能会暴露患者的私人医疗细节。已经提出了许多防御方法来减轻这些攻击,但它们面临着一些限制:它们通常在具有严格保密要求的实际应用中无效,或者无法接受地降低模型的性能。此外,大多数防御针对特定的学习方法或攻击类型,难以处理多个并发攻击,并且难以推广到不同类型的模型和数据。这个项目的目标是通过设计一个基于信息论的值得信赖的学习框架来解决这些限制。该项目的成果将推动最先进的可信机器学习和信息理论隐私方法的发展,同时为国家对机器学习和网络安全专业人员日益增长的需求做出贡献。为此,该团队将设计一个实用,准确,灵活和可推广的信息理论可信表示学习框架,具有鲁棒性和隐私保障。这项工作将围绕三个重点展开。Thrust 1将设计新的信息理论表示学习方法来对抗常见的隐私攻击,包括成员推断,属性推断和数据重构攻击。Thrust 2将设计新的信息理论表示学习方法来对抗常见的安全攻击,包括测试时逃避攻击、训练时中毒攻击以及训练和测试时后门攻击。推力3将推广推力1和推力2,以处理不同的攻击类型(例如,多个隐私/安全攻击或它们的组合),数据类型(例如,时空数据,多模式数据),和学习类型(例如,联邦学习、图学习、自监督学习)。拟议的框架将在多个领域的数据集和学习任务上进行评估,包括计算机视觉、自然语言处理、多媒体和网络。该团队将开发一个开源工具包,使学术界、工业界和政府的其他研究人员能够广泛使用这些技术。通过夏令营、讲座、讲座、辅导和研讨会等推广和教育活动,促进K-12、本科生和研究生的参与,重点是为STEM中代表性不足的群体提供机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Binghui Wang其他文献
State Estimation via Inference on a Probabilistic Graphical Model - A Different Perspective
通过概率图形模型推理进行状态估计 - 不同的视角
- DOI:
10.1109/isgt45199.2020.9087690 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
L. Myers;Binghui Wang;N. Gong;D. Qiao - 通讯作者:
D. Qiao
Experimental analysis on the cyclic strength and deformation characteristics of marine coral sand under different loading frequencies
- DOI:
10.1016/j.soildyn.2024.109165 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Ruirong Zhou;Shuanglong Xin;Binghui Wang;Lei Zhang;Yunfei Zhang;Qi Wu;Weijia Ma;You Qin - 通讯作者:
You Qin
Rapid C to FPGA Prototyping with Multithreaded Emulation Engine
使用多线程仿真引擎快速进行 C 到 FPGA 原型设计
- DOI:
10.1109/iscas.2007.378476 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Shin;Binghui Wang;Tay;Chih - 通讯作者:
Chih
Phylogenetic characteristics of dengue virus revealed the hig relatedness 1 between imported and local strains during the dengue outbreak in 2013 in 2 Yunnan , China
登革热病毒的系统发育特征揭示了2013年2中国云南登革热暴发期间进口毒株与本地毒株之间的高度相关性1 。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Binghui Wang;Yaping Li;Yue Feng;Hongning Zhou;Yaobo Liang;Jie;Dai;Weihong Qin;Yunzhang Hu;Yajuan Wang;Li Zhang;Z. Baloch;Heng;X. Xia - 通讯作者:
X. Xia
Neighborhood Sensitive Preserving Embedding for Pattern Classification
用于模式分类的邻域敏感保留嵌入
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Binghui Wang;Chuang Lin;Xuefeng Zhao;Zheming Lu - 通讯作者:
Zheming Lu
Binghui Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Binghui Wang', 18)}}的其他基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
CRII: SaTC: Towards Understanding the Robustness of Graph Neural Networks against Graph Perturbations
CRII:SaTC:了解图神经网络对抗图扰动的鲁棒性
- 批准号:
2241713 - 财政年份:2023
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
CRII: SaTC: Discerning the Upgradeability of Smart Contracts in Blockchains From a Security Perspective
CRII:SaTC:从安全角度辨别区块链智能合约的可升级性
- 批准号:
2245627 - 财政年份:2023
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411153 - 财政年份:2024
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411151 - 财政年份:2024
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
CAREER: Towards Practical Systems for Trustworthy Cloud Computing
职业:迈向可信赖云计算的实用系统
- 批准号:
2415403 - 财政年份:2023
- 资助金额:
$ 54.8万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247619 - 财政年份:2023
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247620 - 财政年份:2023
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
Towards Trustworthy Large Language Models
迈向可信赖的大型语言模型
- 批准号:
2895111 - 财政年份:2023
- 资助金额:
$ 54.8万 - 项目类别:
Studentship
SaTC: CORE: Small: Towards Trustworthy and Performant Decentralized Resource Markets in the Blockchain Era
SaTC:核心:小型:迈向区块链时代值得信赖和高效的去中心化资源市场
- 批准号:
2226932 - 财政年份:2022
- 资助金额:
$ 54.8万 - 项目类别:
Standard Grant
Towards Robust and Trustworthy Recommendation Systems
迈向稳健且值得信赖的推荐系统
- 批准号:
DGECR-2022-00381 - 财政年份:2022
- 资助金额:
$ 54.8万 - 项目类别:
Discovery Launch Supplement