CAREER: Neural mechanisms of auditory object recognition

职业:听觉物体识别的神经机制

基本信息

  • 批准号:
    1942480
  • 负责人:
  • 金额:
    $ 140万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This project will investigate how listeners are able to comprehend speech in challenging acoustical conditions like cocktail parties. Speech-recognition technology dramatically underperforms human hearing in such conditions, which has been a barrier to improving voice-based computer interfaces and prosthetic speech-to-text assistive devices. This research will address this gap by examining a perceptual illusion called auditory restoration, in which the brain fills in words and other sounds that have been interrupted by brief, loud noises. This phenomenon implies that the brain constructs robust internal models of speech sounds, and that it uses them to determine what is being said from limited or degraded information. To learn how these internal models work, this study examines perceptual restoration in zebra finches, a species of songbird. Zebra finches employ complex vocalizations to identify themselves to each other, and need to be able to understand who is singing in noisy social settings. The project combines methods of measuring behavior and brain activity to probe the neural circuits underlying auditory restoration in finches. By identifying these circuits and how they are wired up, this research will give insight into fundamental perceptual processes that allow humans to communicate through speech, and more broadly, that enable the brain to construct coherent experiences from sensory information that is often incomplete and unreliable. A better understanding of the neural mechanisms of auditory perception also promises to enhance the performance of speech-recognition algorithms to facilitate communication. The educational component of the proposal addresses a growing need in the field for computational proficiency at earlier stages in training. The investigator plans to implement a curriculum to encourage and support early exposure to computational and systems neuroscience, serve as a recruitment tool for systems neuroscience labs, and contribute to the university's goals of increasing data literacy and skills in data science.Auditory restoration has been widely observed in a broad range of mammalian and avian species. It is likely to contribute to humans’ remarkable ability to reliably decode phonemes from speech in extremely noisy conditions. The research will advance the understanding of this phenomenon by bringing a well-characterized animal model of auditory processing to investigate a well-established human psychophysical paradigm. The approach combines in vivo extracellular and intracellular electrophysiology with operant behavior to examine how bottom-up and top-down processes interact within the auditory cortex to support auditory restoration in zebra finches. Aim 1 examines how auditory experience affects behavioral auditory restoration. Aim 2 determines where the neural correlates of top-down and bottom-up restoration emerge in the auditory processing hierarchy. Aim 3 begins to dissect the mechanism by investigating how specific cell types and their intrinsic neural dynamics contribute to tolerance for noise. The educational objectives include the development of a curriculum to train students in data science and best software practices for systems neuroscience and will impact the broader community through freely distributed, interactive instructional materials and training the next generation of data scientists in neuroscience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将调查听众如何能够在具有挑战性的声学条件下理解演讲,比如鸡尾酒会。在这样的条件下,语音识别技术的人类听力严重落后,这一直是改进基于语音的计算机接口和假体语音到文本辅助设备的障碍。这项研究将通过检测一种名为听觉恢复的知觉错觉来解决这一差距,在这种错觉中,大脑填充被短暂而响亮的噪音打断的单词和其他声音。这一现象表明,大脑构建了强大的语音内部模型,并使用这些模型从有限或退化的信息中确定正在说什么。为了了解这些内部模型是如何工作的,这项研究考察了斑马雀--一种鸣禽--的知觉恢复。斑马雀使用复杂的发声来相互识别自己,并且需要能够在嘈杂的社交环境中听懂谁在唱歌。该项目结合了测量行为和大脑活动的方法,以探索雀类听觉恢复的神经回路。通过识别这些电路以及它们是如何连接起来的,这项研究将深入了解基本的感知过程,这些过程允许人类通过语言进行交流,更广泛地说,使大脑能够从通常不完整和不可靠的感觉信息中构建连贯的体验。更好地理解听觉感知的神经机制也有望提高语音识别算法的性能,以促进交流。该提案的教育部分解决了外地在培训早期阶段对熟练计算能力的日益增长的需求。这位研究人员计划实施一门课程,以鼓励和支持早期接触计算和系统神经科学,作为系统神经科学实验室的招聘工具,并为该大学提高数据素养和数据科学技能的目标做出贡献。听觉恢复在广泛的哺乳动物和鸟类中被广泛观察到。它很可能有助于人类在极端嘈杂的条件下可靠地从语音中解码音素的非凡能力。这项研究将通过引入一个具有良好特征的听觉处理的动物模型来研究一个公认的人类心理物理范式,从而促进对这一现象的理解。该方法将体内细胞外和细胞内的电生理学与操作行为相结合,以检查自下而上和自上而下的过程如何在听觉皮质内相互作用,以支持斑马雀的听觉恢复。目的1研究听觉体验如何影响行为听觉恢复。目标2确定自上而下和自下而上恢复的神经关联在听觉处理层级中出现的位置。目的3通过研究特定的细胞类型及其固有的神经动力学如何影响对噪音的耐受,开始剖析其机制。教育目标包括开发课程,培训学生在系统神经科学方面的数据科学和最佳软件实践,并将通过免费分发的互动教学材料和培训神经科学方面的下一代数据科学家来影响更广泛的社区。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chad Meliza其他文献

Chad Meliza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Neural mechanisms underlying optimal performance
职业:最佳表现背后的神经机制
  • 批准号:
    2238247
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Neural Mechanisms of Learning to Attend
职业:学习参与的神经机制
  • 批准号:
    2143391
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Neural Mechanisms of Stereotypic Vision
职业:刻板视觉的神经机制
  • 批准号:
    2218557
  • 财政年份:
    2022
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Mechanisms regulating neural identity, connectivity and function- From stem cells to circuits
职业:调节神经同一性、连接性和功能的机制——从干细胞到神经回路
  • 批准号:
    2047020
  • 财政年份:
    2021
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Neural Mechanisms Underlying a Neuroprosthetic Skill
职业:神经修复技能背后的神经机制
  • 批准号:
    2048231
  • 财政年份:
    2021
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Neural circuit mechanisms of inference: how brains learn and use hidden structure
职业:推理的神经回路机制:大脑如何学习和使用隐藏结构
  • 批准号:
    2042796
  • 财政年份:
    2021
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Neural circuit mechanisms of spatial target selection in the mammalian midbrain
职业:哺乳动物中脑空间目标选择的神经回路机制
  • 批准号:
    2047298
  • 财政年份:
    2021
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Neural mechanisms of flexible sensorimotor processing in C. elegans
职业:秀丽隐杆线虫灵活感觉运动处理的神经机制
  • 批准号:
    1845137
  • 财政年份:
    2019
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
CAREER: Dissecting Neural Mechanisms of Behavioral State Control in C. elegans
职业:剖析线虫行为状态控制的神经机制
  • 批准号:
    1845663
  • 财政年份:
    2019
  • 资助金额:
    $ 140万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了