CAREER: Integrating causal evolutionary processes into phylogenetic comparative biology
职业:将因果进化过程整合到系统发育比较生物学中
基本信息
- 批准号:1942717
- 负责人:
- 金额:$ 98.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Studies of “evolution-in-action” have revealed much about the causes of evolutionary change, including why it sometimes fails. However, it is not always obvious when these causes are also responsible for extinction and adaptation over million-year timescales--the timescale primarily relevant to the evolution and maintenance of biodiversity. With increasing rates of global change, it is vital to understand how and why species either adapt and survive, or fail to adapt and perish. This project builds a bridge between the causes of evolution studied over short timescales and the long-term outcomes evident from existing evolutionary diversity with a new set of computational tools and resources for biology research and education. New models will integrate field, genetic and experimental studies with patterns of trait change from across the tree of life. The research will apply these models to comprehensive datasets in mammals and fishes to better understand the causes of trait change over million-year timescales. The research will also develop and implement freely available classroom resources that specifically address issues of scale and causation over short and long evolutionary timescales--educating the next generation of citizens and scientists to the pressing challenge of predicting how current global change will affect the long-term outlook of biodiversity. Recent controversies suggest strong limits on what inferences can be made from macroevolutionary data alone. One solution to these limitations is to synthesize what we know about the causes and limits of evolution from field and experimental studies into macroevolutionary methods. This project identifies three "injection sites" where such information can be integrated into comparative models to elucidate the causes of macroevolution. The research will develop new models that integrate measurements of genetic variation, natural selection and population data with macroevolutionary scale data. It will also enable integration of biomechanical models based on knowledge of trait functions. By uniting macroevolutionary models with knowledge and data on how microevolutionary data affect the evolutionary process, this research will open new paths for studying the causes of macroevolution. These models will be further connected to the field of causal inference--which has revolutionized artificial intelligence by rethinking how statistical methods represent causation. Finally, the research will address unfilled gaps in biology pedagogy by developing and investigating how to make the non-intuitive shift from Mendelian genetics to macroevolution in biology curricula. This will be accomplished by developing and implementing novel, software-based Open Education resources across multiple institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对“行动中的进化”的研究揭示了很多关于进化变化的原因,包括为什么它有时会失败。然而,这些原因在几百万年的时间尺度上-主要与生物多样性的进化和维持有关-也是造成灭绝和适应的原因,这一点并不总是显而易见的。随着全球变化的速度越来越快,了解物种如何以及为什么适应并生存,或者无法适应并死亡至关重要。该项目通过一套新的计算工具和生物学研究和教育资源,在短期内研究的进化原因与现有进化多样性的长期结果之间建立了一座桥梁。新的模型将把野外、遗传和实验研究与整个生命树的性状变化模式结合起来。该研究将把这些模型应用于哺乳动物和鱼类的综合数据集,以更好地了解百万年时间尺度上特征变化的原因。这项研究还将开发和实施免费提供的课堂资源,专门解决短期和长期进化时间尺度上的规模和因果关系问题-教育下一代公民和科学家应对预测当前全球变化将如何影响生物多样性长期前景的紧迫挑战。最近的争论表明,仅从宏观进化数据可以做出什么样的推论存在很大的局限性。解决这些局限性的一个办法是将我们从实地和实验研究中所知道的关于进化的原因和局限性的知识综合到宏观进化方法中。该项目确定了三个“注射点”,这些信息可以整合到比较模型,以阐明宏观进化的原因。该研究将开发新的模型,将遗传变异,自然选择和种群数据的测量与宏观进化尺度数据相结合。它还将使基于性状功能知识的生物力学模型的集成成为可能。通过将宏观进化模型与微观进化数据如何影响进化过程的知识和数据相结合,这项研究将为研究宏观进化的原因开辟新的途径。这些模型将进一步连接到因果推理领域-通过重新思考统计方法如何表示因果关系,这已经彻底改变了人工智能。最后,研究将通过开发和调查如何在生物课程中从孟德尔遗传学到宏观进化的非直观转变来解决生物学教学中未填补的空白。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conceptual and empirical bridges between micro- and macroevolution
- DOI:10.1038/s41559-023-02116-7
- 发表时间:2023-07-10
- 期刊:
- 影响因子:16.8
- 作者:Rolland,Jonathan;Henao-Diaz,L. Francisco;Schluter,Dolph
- 通讯作者:Schluter,Dolph
How should functional relationships be evaluated using phylogenetic comparative methods? A case study using metabolic rate and body temperature
- DOI:10.1111/evo.14213
- 发表时间:2021-03
- 期刊:
- 影响因子:3.3
- 作者:J. Uyeda;Nicholas Bone;Sean W. McHugh;J. Rolland;Matthew W. Pennell
- 通讯作者:J. Uyeda;Nicholas Bone;Sean W. McHugh;J. Rolland;Matthew W. Pennell
Causes and Consequences of Apparent Timescaling Across All Estimated Evolutionary Rates
所有估计进化速率的明显时间尺度的原因和后果
- DOI:10.1146/annurev-ecolsys-011921-023644
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Harmon, Luke J.;Pennell, Matthew W.;Henao-Diaz, L. Francisco;Rolland, Jonathan;Sipley, Breanna N.;Uyeda, Josef C.
- 通讯作者:Uyeda, Josef C.
Rules of teeth development align microevolution with macroevolution in extant and extinct primates
- DOI:10.1038/s41559-023-02167-w
- 发表时间:2023-08-31
- 期刊:
- 影响因子:16.8
- 作者:Machado,Fabio A.;Mongle,Carrie S.;Uyeda,Josef C.
- 通讯作者:Uyeda,Josef C.
A common mechanism drives the alignment between the micro‐ and macroevolution of primate molars
一个共同的机制驱动灵长类动物臼齿的微观进化和宏观进化之间的一致性
- DOI:10.1111/evo.14600
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Mongle, Carrie S.;Nesbitt, Allison;Machado, Fabio A.;Smaers, Jeroen B.;Turner, Alan H.;Grine, Frederick E.;Uyeda, Josef C.
- 通讯作者:Uyeda, Josef C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josef Uyeda其他文献
Cross-disciplinary information for understanding macroevolution
理解宏观进化的跨学科信息
- DOI:
10.1016/j.tree.2022.10.013 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:17.300
- 作者:
Lee Hsiang Liow;Josef Uyeda;Gene Hunt - 通讯作者:
Gene Hunt
Josef Uyeda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Josef Uyeda', 18)}}的其他基金
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
- 批准号:
1661516 - 财政年份:2017
- 资助金额:
$ 98.15万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 98.15万 - 项目类别:
Standard Grant
Uncovering colorectal cancer etiology and biology by integrating proteomics with other omics data
通过将蛋白质组学与其他组学数据相结合,揭示结直肠癌的病因学和生物学
- 批准号:
10585424 - 财政年份:2023
- 资助金额:
$ 98.15万 - 项目类别:
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 98.15万 - 项目类别:
Standard Grant
Mendelian randomization for modern data: Integrating data resources to improve accuracy of causal estimates.
现代数据的孟德尔随机化:整合数据资源以提高因果估计的准确性。
- 批准号:
10716241 - 财政年份:2023
- 资助金额:
$ 98.15万 - 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10366570 - 财政年份:2022
- 资助金额:
$ 98.15万 - 项目类别:
Pancreatic Cancer Risk Prediction: Integrating Individual-Level Clinical and Genetic Data
胰腺癌风险预测:整合个体水平的临床和遗传数据
- 批准号:
10478374 - 财政年份:2022
- 资助金额:
$ 98.15万 - 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10549831 - 财政年份:2022
- 资助金额:
$ 98.15万 - 项目类别:
Integrating common and rare genetic variation in autism spectrum disorder
整合自闭症谱系障碍中常见和罕见的遗传变异
- 批准号:
10382806 - 财政年份:2022
- 资助金额:
$ 98.15万 - 项目类别:
Integrating common and rare genetic variation in autism spectrum disorder
整合自闭症谱系障碍中常见和罕见的遗传变异
- 批准号:
10548147 - 财政年份:2022
- 资助金额:
$ 98.15万 - 项目类别:
Identification of Genes and DNA Methylation Markers for Lung Cancer Risk by Integrating Multi-omics Data
通过整合多组学数据鉴定肺癌风险基因和 DNA 甲基化标记
- 批准号:
10331874 - 财政年份:2021
- 资助金额:
$ 98.15万 - 项目类别: