Mendelian randomization for modern data: Integrating data resources to improve accuracy of causal estimates.
现代数据的孟德尔随机化:整合数据资源以提高因果估计的准确性。
基本信息
- 批准号:10716241
- 负责人:
- 金额:$ 35.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-14 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAffectAlzheimer&aposs disease riskAwarenessBiologicalC-reactive proteinCardiometabolic DiseaseCatalogsClinicalComputer softwareConfounding Factors (Epidemiology)CoupledDataData SetData SourcesDatabasesDepositionElementsEnsureGenotypeGoalsHeritabilityIndividualKnowledgeLDL Cholesterol LipoproteinsLinkage DisequilibriumMeasurableMeasuresMediatingMendelian randomizationMethodologyMethodsModelingModernizationNational Human Genome Research InstituteOutcomePatternPerformancePlasmaQuality ControlResearch MethodologyResearch PersonnelRisk FactorsRoleSampling StudiesScreening procedureSelection BiasSourceStatistical MethodsTechniquesTestingVariantWorkbiobankcardiometabolic riskcomputerized toolsdata integrationdata resourcegenetic associationgenome wide association studyheart disease riskhuman diseaseimprovedinnovationknowledge basemodel buildingmultiple data sourcesnovelopen sourcephenomepleiotropismpublic databaserandomized trialsimulationsoftware developmentstatisticsstudy populationsymposiumtooltraituser friendly softwareuser-friendly
项目摘要
Project Summary/Abstract
Mendelian randomization (MR) is a widely applicable causal inference technique that makes it possible to estimate causal effects using only summary association statistics from genome-wide association studies (GWAS). In recent years, MR has moved from being relatively unknown to a common element of post-GWAS analysis. By facilitating causal inference without a randomized trial, MR makes it possible to rapidly and cheaply assess potential risk factors for human disease. However, most MR methods rely on strong, sometimes unrealistic assumptions. When assumptions are violated, MR will produce biased, misleading results. The goals of this proposal are to 1) develop robust MR statistical methods that address the most crucial problems that arise in analysis of real data sets and 2) develop accessible open-source software to guide a user through the practical challenges of performing MR. We focus on two shortcomings of existing MR methods. First, horizontal pleiotropy is a well-known source of bias in MR. State-of-the-art MR methods are more robust to some types of horizontal pleiotropy than traditional methods. However, there are some forms of horizontal pleiotropy that can only be accounted for by augmenting the analysis with data for confounding variables via multivariable MR (MVMR). Current MVMR methods can only accommodate a few additional variables, while many problems would be best addressed by including larger numbers of traits. In Aim 1, we develop an MVMR method that is computationally scalable and remains accurate when large numbers of traits are included. In Aim 2, we extend this work, developing a method to automatically identify variables that should be included in an MVMR analysis. This is particularly important for understanding the causal role of exposures that have been sparsely studied or have only recently become measurable. In Aim 3, we focus on the challenges posed by linkage disequilibrium (LD). The majority of existing methods rely on LO-pruning variants to obtain an independent set, leading to a loss of valuable information. All current methods assume that LD is the same in the exposure and outcome GWAS. This assumption will not always hold, leading to errors that bias causal estimates. To address these problems, we develop an efficient screening tool to alert users when mis-matching LD may be affecting the results and an LD-aware MR method that can accommodate different LD patterns in exposure and outcome. The methods developed in this proposal will be distributed in user-friendly open-source software. Because the goals of Aims 1-3 are complimentary, in Aim 4 we will integrate these tools into an umbrella software package that guides users through the multiple choices involved in performing MR, from data selection and formatting to interpretion of results. The goal of this package is to address data considerations that are often ignored in methodological research, enabling investigators to obtain more robust, reliable inference.
项目总结/摘要
孟德尔随机化(MR)是一种广泛适用的因果推断技术,它可以仅使用全基因组关联研究(GWAS)的汇总关联统计量来估计因果效应。近年来,MR已从相对未知的状态转变为GWAS后分析的常见元素。通过在没有随机试验的情况下促进因果推理,MR使快速和廉价地评估人类疾病的潜在风险因素成为可能。然而,大多数MR方法依赖于强大的,有时不切实际的假设。当假设被违反时,MR会产生有偏见的、误导性的结果。该提案的目标是:1)开发强大的MR统计方法,解决真实的数据集分析中出现的最关键的问题,2)开发可访问的开源软件,以指导用户通过执行MR的实际挑战。我们关注现有MR方法的两个缺点。首先,水平多效性是MR中的一个众所周知的偏差来源。最先进的MR方法对某些类型的水平多效性比传统方法更鲁棒。然而,有一些形式的水平多效性只能通过多变量MR(MVMR)用混杂变量数据增强分析来解释。目前的MVMR方法只能容纳一些额外的变量,而许多问题最好通过包括大量的性状来解决。在目标1中,我们开发了一种MVMR方法,该方法在计算上可扩展,并且在包含大量性状时保持准确。在目标2中,我们扩展了这项工作,开发了一种方法来自动识别应包含在MVMR分析中的变量。这对于了解很少研究或最近才可测量的接触的因果作用特别重要。在目标3中,我们关注连锁不平衡(LD)带来的挑战。大多数现有的方法依赖于LO修剪变体来获得独立的集合,从而导致有价值的信息的丢失。目前所有的方法都假设LD在暴露和结果GWAS中是相同的。这一假设并不总是成立的,从而导致偏差因果估计的错误。为了解决这些问题,我们开发了一种有效的筛选工具,提醒用户时,不匹配的LD可能会影响结果和LD感知MR方法,可以适应不同的LD模式的曝光和结果。本提案中制定的方法将以方便用户的开放源码软件分发。由于目标1-3的目标是互补的,在目标4中,我们将这些工具集成到一个伞形软件包中,该软件包指导用户完成执行MR所涉及的多种选择,从数据选择和格式化到结果解释。该软件包的目标是解决在方法研究中经常被忽视的数据问题,使研究人员能够获得更强大,可靠的推断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean V. Morrison其他文献
Jean V. Morrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean V. Morrison', 18)}}的其他基金
Penalized likelihood methods for estimation and testing with genomic data
使用基因组数据进行估计和测试的惩罚似然方法
- 批准号:
9043646 - 财政年份:2016
- 资助金额:
$ 35.88万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Research Grant














{{item.name}}会员




