CAREER: Optimizing Human Speech Perception in Noisy Environments with User-Guided Machine Learning

职业:通过用户引导的机器学习优化嘈杂环境中的人类语音感知

基本信息

  • 批准号:
    1942718
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Unwanted background noise often hinders device-mediated communication during the nearly 20 billion yearly video conference calls and for millions of hearing aid users. Approaches are developed to remove unwanted noise, but unfortunately, they do not perform well in many real environments. Subsequently, the noise-removal approaches often provide low quality and unintelligible listening experiences, which results in dissatisfied and frustrated users. This Faculty Early Carrer Development project will develop noise-reduction and assessment approaches that address these issues, resulting in improved listening experiences for users. Individuals and companies that regularly use digital means (e.g. voice conferencing and hearing aids) for person-to-person communication will be major beneficiaries of this work. The data and algorithms that result from this research will be made available to benefit scientists and researchers from diverse and interdisciplinary fields. Additionally, educational activities based on this research will be integrated into various efforts to increase the number of underrepresented participants in these research areas.The main objective of this project is to develop user-guided machine-learning algorithms that result in improved listening experiences in real-world noisy environments. In environments that contain many competing talkers, noise-reduction systems inadvertently remove or retain unintended speech signals. The proposed research activities will address this by (1) developing multi-modal computational approaches that identify the speech signal that a specific user wants to hear. Computational assessment metrics are generally used by researchers to assess performance, but they do not always correlate with individual user sentiment, meaning investigators have inaccurate assessment results. This project will (2) develop an effective interface for capturing and predicting short-time user assessment of quality and intelligibility. Simulated and real-world speech data differ in terms of speaker, noise and environmental characteristics, but current noise-reduction approaches are incapable of adapting to these differences on the fly. This is a major shortcoming as deployed noise-reduction systems will encounter unknown speakers and noises. The investigator will (3) develop a novel class of user-guided machine learning algorithms that utilize true and predicted user assessment in near-real time for system optimization. Successfully completing these tasks will help better understand speech perception and increase the usability of noise-reduction systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在每年近200亿次视频会议通话期间以及数百万助听器用户中,不必要的背景噪音通常会阻碍设备介导的通信。方法被开发来去除不需要的噪声,但不幸的是,它们在许多真实的环境中表现不佳。随后,噪声去除方法通常提供低质量和难以理解的收听体验,这导致用户不满意和沮丧。这个教师早期职业发展项目将开发解决这些问题的降噪和评估方法,从而改善用户的听力体验。经常使用数字手段(例如语音会议和助听器)进行人与人之间沟通的个人和公司将成为这项工作的主要受益者。这项研究产生的数据和算法将使来自不同和跨学科领域的科学家和研究人员受益。此外,基于这项研究的教育活动将被整合到各种努力中,以增加这些研究领域中代表性不足的参与者的数量。该项目的主要目标是开发用户引导的机器学习算法,从而改善现实世界嘈杂环境中的听力体验。在包含许多相互竞争的说话者的环境中,降噪系统会无意中删除或保留意想不到的语音信号。拟议的研究活动将通过以下方式解决这一问题:(1)开发多模态计算方法,以识别特定用户想要听到的语音信号。研究人员通常使用计算评估指标来评估性能,但它们并不总是与个人用户情绪相关,这意味着研究人员的评估结果不准确。这个项目将(2)开发一个有效的界面,用于捕获和预测短期用户对质量和清晰度的评估。模拟和真实世界的语音数据在扬声器,噪声和环境特性方面有所不同,但目前的降噪方法无法适应这些差异。这是一个主要的缺点,因为部署的降噪系统将遇到未知的扬声器和噪声。研究人员将(3)开发一类新的用户引导机器学习算法,该算法利用近实时的真实和预测用户评估进行系统优化。成功完成这些任务将有助于更好地理解语音感知和提高降噪系统的可用性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attention-Based Speech Enhancement Using Human Quality Perception Modeling
From the perspective of perceptual speech quality: The robustness of frequency bands to noise
从感知语音质量角度:频段对噪声的鲁棒性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Williamson其他文献

HEALTH (Healthy Eating, Activity, Lifestyle Training Headquarters) internet/mobile weight management program for the U.S. Army: Outcomes and future directions
  • DOI:
    10.1016/j.jsams.2017.09.104
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tiffany Stewart;Robbie Beyl;Michael Switzer;Karl Friedl;Andrew Young;Donna Ryan;Donald Williamson
  • 通讯作者:
    Donald Williamson
Corn: Co-Trained Full- and No-Reference Speech Quality Assessment
玉米:联合训练的完整和无参考语音质量评估

Donald Williamson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Williamson', 18)}}的其他基金

CAREER: Optimizing Human Speech Perception in Noisy Environments with User-Guided Machine Learning
职业:通过用户引导的机器学习优化嘈杂环境中的人类语音感知
  • 批准号:
    2235228
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CRII: RI: Towards Human-Level Assessment of Speech Quality and Intelligibility in Real-World Environments
CRII:RI:实现现实环境中语音质量和清晰度的人类水平评估
  • 批准号:
    1755844
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
  • 批准号:
    2312643
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Optimizing virtual hits of human CGAS inhibitors to treat neurodegeneration
优化人类 CGAS 抑制剂的虚拟命中来治疗神经退行性疾病
  • 批准号:
    10603818
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
I-Corps: Analyzing and Optimizing Human Factors and Ergonomics of Virtual Reality Applications
I-Corps:分析和优化虚拟现实应用的人为因素和人体工程学
  • 批准号:
    2331503
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: A holistic human-in-the-loop framework for optimizing a personalized prosthetic arm
协作研究:用于优化个性化假肢的整体人机交互框架
  • 批准号:
    2221979
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: A holistic human-in-the-loop framework for optimizing a personalized prosthetic arm
协作研究:用于优化个性化假肢的整体人机交互框架
  • 批准号:
    2221940
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Optimizing Indoor Environment Quality through Quantifying Human Experience using Ubiquitous Sensing
利用无处不在的传感技术量化人类体验,优化室内环境质量
  • 批准号:
    RGPIN-2022-04492
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing Indoor Environment Quality through Quantifying Human Experience using Ubiquitous Sensing
利用无处不在的传感技术量化人类体验,优化室内环境质量
  • 批准号:
    DGECR-2022-00507
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Launch Supplement
CAREER: Optimizing Human Speech Perception in Noisy Environments with User-Guided Machine Learning
职业:通过用户引导的机器学习优化嘈杂环境中的人类语音感知
  • 批准号:
    2235228
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Optimizing Surgical Transplant of CFTR Gene-Corrected Human Basal Stem Cells to the Upper Airway
优化 CFTR 基因校正的人类基底干细胞至上呼吸道的手术移植
  • 批准号:
    10548833
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了