CAREER: Algorithms, Incentives, and Policy for Data Privacy

职业:数据隐私的算法、激励和政策

基本信息

  • 批准号:
    1942772
  • 负责人:
  • 金额:
    $ 48.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Privacy concerns are becoming a major obstacle to using data, and it is often unclear how current regulations should translate into technology. As differential privacy and other privacy tools are brought to bear in practice, new challenges arise in ensuring these applications maintain the privacy guarantees intended by theory. How, then, should organizations utilize advances in privacy technologies to make use of potentially sensitive data? This project bridges the gap between theory and practice in the formal study of privacy by addressing new technical challenges that arise when theoretical privacy technologies are implemented in real-world settings.This project addresses three main technical questions: Firstly, how should a data curator optimally allocate a fixed differential privacy budget across multiple analysis tasks, to trade off the value of accurate analysis with the privacy budget? Secondly, how do people reason about and value their privacy in practice, and how do these valuations change based on context of the data or analysis task? Thirdly, how should markets for personal data be regulated to protect individual privacy and population-level fairness, while still enabling valuable data-driven decision making? Answering these questions requires an interdisciplinary approach that integrates tools from computer science for differentially private algorithm design, economics to understand incentives of organizations and individuals, and public policy for regulation of privacy technologies. To ensure the broad impact of this research, this project also includes a significant educational and outreach component, including curriculum development, mentorship of students, and workshop organization aimed at improving diversity in graduate education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对隐私的担忧正成为使用数据的主要障碍,而且人们往往不清楚当前的监管应如何转化为技术。随着差分隐私和其他隐私工具在实践中的应用,在确保这些应用程序保持理论所期望的隐私保障方面出现了新的挑战。那么,组织应该如何利用先进的隐私技术来利用潜在的敏感数据呢?该项目通过解决理论隐私技术在现实世界中实施时出现的新技术挑战,弥合了隐私正式研究中理论与实践之间的差距。该项目解决了三个主要的技术问题:首先,数据管理员应该如何在多个分析任务之间最佳地分配固定的差异隐私预算,以权衡准确分析的价值和隐私预算?其次,人们在实践中如何对自己的隐私进行推理和评估,这些评估如何根据数据或分析任务的背景而变化?第三,如何监管个人数据市场,以保护个人隐私和人口层面的公平,同时仍能实现有价值的数据驱动决策?回答这些问题需要一种跨学科的方法,将不同隐私算法设计的计算机科学工具、理解组织和个人激励的经济学工具以及隐私技术监管的公共政策工具整合在一起。为了确保这项研究的广泛影响,该项目还包括一个重要的教育和推广组成部分,包括课程开发、学生指导和旨在提高研究生教育多样性的研讨会组织。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What are the chances? Explaining the epsilon parameter in differential privacy
有什么机会?
The Privacy Elasticity of Behavior: Conceptualization and Application
隐私行为弹性:概念化与应用
  • DOI:
    10.1145/3580507.3597778
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dekel, Inbal;Cummings, Rachel;Heffetz, Ori;Ligett, Katrina
  • 通讯作者:
    Ligett, Katrina
Centering Policy and Practice: Research Gaps Around Usable Differential Privacy
Mean Estimation with User-level Privacy under Data Heterogeneity
  • DOI:
    10.48550/arxiv.2307.15835
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Cummings;V. Feldman;Audra McMillan;Kunal Talwar
  • 通讯作者:
    Rachel Cummings;V. Feldman;Audra McMillan;Kunal Talwar
Differentially Private Online Submodular Maximization
差分隐私在线子模块最大化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Cummings其他文献

Comment on “NIST SP 800-226: Guidelines for Evaluating Differential Privacy Guarantees”
对“NIST SP 800-226:评估差异隐私保证的指南”的评论
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Cummings;Shlomi Hod;Gabriel Kaptchuk;Priyanka Nanayakkara;Jayshree Sarathy;Jeremy Seeman
  • 通讯作者:
    Jeremy Seeman
Private Synthetic Data Generation via GANs (Supporting PDF)
通过 GAN 生成私有合成数据(支持 PDF)
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Digvijay Boob;Rachel Cummings;Dhamma Kimpara;U. Tantipongpipat;Chris Waites;Kyle Zimmerman
  • 通讯作者:
    Kyle Zimmerman
Individual Sensitivity Preprocessing for Data Privacy
数据隐私的个人敏感性预处理
The Role of Differential Privacy in GDPR Compliance
差异隐私在 GDPR 合规性中的作用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Cummings;D. Desai
  • 通讯作者:
    D. Desai
D S ] 1 6 M ar 2 01 8 Differential Privacy for Growing Databases
DS ] 1 6 Mar 2 01 8 不断增长的数据库的差异隐私
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Cummings;Sara Krehbiel;Kevin A. Lai
  • 通讯作者:
    Kevin A. Lai

Rachel Cummings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Cummings', 18)}}的其他基金

CRII: SaTC: Data Privacy for Strategic Agents
CRII:SaTC:战略代理的数据隐私
  • 批准号:
    2147657
  • 财政年份:
    2021
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Standard Grant
CAREER: Algorithms, Incentives, and Policy for Data Privacy
职业:数据隐私的算法、激励和政策
  • 批准号:
    2138834
  • 财政年份:
    2021
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Data Privacy for Strategic Agents
CRII:SaTC:战略代理的数据隐私
  • 批准号:
    1850187
  • 财政年份:
    2019
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Standard Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了