CRII: SaTC: Data Privacy for Strategic Agents
CRII:SaTC:战略代理的数据隐私
基本信息
- 批准号:2147657
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project lays the groundwork for understanding how existing tools for privacy-preserving data analysis interact with strategic and human aspects of practical privacy guarantees. When strategic individuals have privacy concerns about the use of their data, they may modify their behavior to ensure less, or perhaps more favorable, information is revealed. The project's novelties are an interdisciplinary approach, which combines tools from algorithm design, machine learning, and economics. The broader significance and importance of this work is to provide a critical step for society's ability to collect useful data and to interpret data via existing algorithms. As more personal data are collected, stored, and used in algorithmic decision making, these results are useful in the legal and policy landscape of personal data management. This work has two main technical thrusts. First, this project studies how privacy technologies can be designed and deployed to manage privacy concerns of strategic individuals. This yields insight into the design of optimal privacy technologies for strategic individuals in practical application areas. Second, this project develops data analysis techniques for settings where data are generated by privacy-aware individuals. This yields tools for the design and analysis of algorithms to efficiently learn and optimize from a strategic individual's data. This project also includes a significant educational and outreach component, including curriculum development, mentorship of students, and workshop organization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为理解现有的隐私保护数据分析工具如何与实际隐私保障的战略和人性化方面相互作用奠定了基础。当战略个人对数据的使用有隐私担忧时,他们可能会修改自己的行为,以确保透露更少或更有利的信息。 该项目的新颖之处是一种跨学科的方法,它结合了算法设计,机器学习和经济学的工具。这项工作更广泛的意义和重要性是为社会收集有用数据和通过现有算法解释数据的能力提供关键一步。随着越来越多的个人数据被收集、存储和用于算法决策,这些结果在个人数据管理的法律的和政策环境中非常有用。这项工作有两个主要的技术要点。 首先,该项目研究如何设计和部署隐私技术来管理战略个人的隐私问题。这将深入了解在实际应用领域的战略个人的最佳隐私技术的设计。其次,该项目开发了数据分析技术,用于由隐私意识强的个人生成数据的环境。这产生了用于设计和分析算法的工具,以有效地从战略个人的数据中学习和优化。 该项目还包括一个重要的教育和推广组成部分,包括课程开发,指导学生,和研讨会的组织。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Sloan Nietert;Rachel Cummings;Ziv Goldfeld
- 通讯作者:Sloan Nietert;Rachel Cummings;Ziv Goldfeld
PAPRIKA: Private Online False Discovery Rate Control
PAPRIKA:私人在线虚假发现率控制
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang, Wanrong;Kamath, Gautam;Cummings, Rachel
- 通讯作者:Cummings, Rachel
Differentially Private Online Submodular Maximization
差分隐私在线子模块最大化
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Perez-Salazar, Sebastian;Cummings, Rachel
- 通讯作者:Cummings, Rachel
Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation
- DOI:10.1145/3461702.3462625
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Chris Waites;Rachel Cummings
- 通讯作者:Chris Waites;Rachel Cummings
Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size
统计学家的私人序贯假设检验:隐私、错误率和样本量
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wanrong Zhang;Yajun Mei;Rachel Cummings
- 通讯作者:Rachel Cummings
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Cummings其他文献
Comment on “NIST SP 800-226: Guidelines for Evaluating Differential Privacy Guarantees”
对“NIST SP 800-226:评估差异隐私保证的指南”的评论
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rachel Cummings;Shlomi Hod;Gabriel Kaptchuk;Priyanka Nanayakkara;Jayshree Sarathy;Jeremy Seeman - 通讯作者:
Jeremy Seeman
Private Synthetic Data Generation via GANs (Supporting PDF)
通过 GAN 生成私有合成数据(支持 PDF)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Digvijay Boob;Rachel Cummings;Dhamma Kimpara;U. Tantipongpipat;Chris Waites;Kyle Zimmerman - 通讯作者:
Kyle Zimmerman
Individual Sensitivity Preprocessing for Data Privacy
数据隐私的个人敏感性预处理
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rachel Cummings;D. Durfee - 通讯作者:
D. Durfee
The Role of Differential Privacy in GDPR Compliance
差异隐私在 GDPR 合规性中的作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rachel Cummings;D. Desai - 通讯作者:
D. Desai
D S ] 1 6 M ar 2 01 8 Differential Privacy for Growing Databases
DS ] 1 6 Mar 2 01 8 不断增长的数据库的差异隐私
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rachel Cummings;Sara Krehbiel;Kevin A. Lai - 通讯作者:
Kevin A. Lai
Rachel Cummings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Cummings', 18)}}的其他基金
CAREER: Algorithms, Incentives, and Policy for Data Privacy
职业:数据隐私的算法、激励和政策
- 批准号:
2138834 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Algorithms, Incentives, and Policy for Data Privacy
职业:数据隐私的算法、激励和政策
- 批准号:
1942772 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Data Privacy for Strategic Agents
CRII:SaTC:战略代理的数据隐私
- 批准号:
1850187 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: RUI: An Intelligent Data-Driven Framework to Achieve Proactive Cybersecurity
CRII:SaTC:RUI:实现主动网络安全的智能数据驱动框架
- 批准号:
2246220 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Towards Data-effective and Cost-efficient Security Attack Detections
CRII:SaTC:迈向数据有效且经济高效的安全攻击检测
- 批准号:
2245968 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: RUI: Towards Trustworthy and Accountable IoT Data Marketplaces
CRII:SaTC:RUI:迈向值得信赖和负责任的物联网数据市场
- 批准号:
2153464 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Towards Trustworthy and Accountable IoT Data Marketplaces
CRII:SaTC:迈向值得信赖和负责任的物联网数据市场
- 批准号:
2231085 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Automatic Generation of API to Natural Language Data Type Mappings for Developer and End User Privacy Risk Mitigation
CRII:SaTC:自动生成 API 到自然语言数据类型映射,以减轻开发人员和最终用户的隐私风险
- 批准号:
1948244 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Searchable Encryption for Biometric Data
CRII:SaTC:生物特征数据的可搜索加密
- 批准号:
1849904 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Data Privacy for Strategic Agents
CRII:SaTC:战略代理的数据隐私
- 批准号:
1850187 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Transparent Capture and Aggregation of Secure Data Provenance for Smart Devices
CRII:SaTC:智能设备安全数据来源的透明捕获和聚合
- 批准号:
1657534 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Energy Efficient Participatory Data Collection Schemes and Context-Aware Incentives for Trustworthy Crowdsensing via Mobile Social Networks
CRII:SaTC:节能参与式数据收集方案和通过移动社交网络进行可信群体感知的情境感知激励
- 批准号:
1464273 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Lockdown: Guarded Control-Flow and Data Privacy for Sensitive Data
CRII:SaTC:锁定:敏感数据的受保护的控制流和数据隐私
- 批准号:
1464155 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant