CAREER: Streamlining Task Deployment on Crowdsourcing Platforms

职业:简化众包平台上的任务部署

基本信息

  • 批准号:
    1942913
  • 负责人:
  • 金额:
    $ 54.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Crowdsourcing leverages online infrastructure to tap an under-explored and richly heterogeneous pool of human knowledge and cognition for solving a variety of tasks that are otherwise considered hard for machines to solve alone. Crowdsourcing systems are built on private or public platforms and are a popular means of deploying a variety of tasks that require human intelligence. Task deployment on such platforms requires identifying appropriate deployment strategies to satisfy deployment parameters, provided by requesters as thresholds on quality, latency, and cost, and also requires analysis of the workforce that is available to undertake the deployed tasks. To date, task deployment remains a painstakingly manual process, as there is little to no help for requesters in deciding how to organize the workforce, in what style, and in what structure to satisfy deployment parameters. Consequently, requesters and workers are mostly confined to one platform, as there is no easy portability of deployment processes across platforms. This project investigates a middle layer that sits between multiple stakeholders in a crowdsourcing ecosystem to aid requesters in deploying crowdsourcing tasks by allowing easy and flexible specification of deployment constraints and goals, and then recommending deployment strategies based on those specifications. Development of this system thus enables the portability and reuse of deployment processes across platforms.To achieve these goals, this project develops a middleware system called SLOAN (Scalable, decLarative, Optimization-driven, Adaptive, and uNified) with three integrated components: (1) The Deployment Strategy Recommendation Engine is optimized to accommodate multi-stakeholders in the ecosystem, and is responsible for modeling and recommending deployment strategies to a batch of requests. (2) The Workforce Analytics Engine analyzes the available workforce and feeds to the Recommendation Engine, as the deployed tasks are to be undertaken by the workers. The outputs of this engine are estimations of workers' preferences or human factors, such as availability of the workers, as precise (discrete), or imprecise (intervals or probability distribution functions) information. (3) The Result Aggregation Module estimates the quality of the deployed tasks, and then feeds to the other two engines for readjustment. It is empowered by fully automated or hybrid algorithms that sparingly involve human intelligence inside machine algorithms. The development plan of SLOAN involves principled modeling, rigorous algorithm design, declarative framework development, deployment and integration inside multiple real world platforms. Different components of SLOAN are empowered with multi-objective discrete optimization and computational geometric algorithms, as well as multi-faceted modeling techniques adapted from machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
众包利用在线基础设施,挖掘尚未开发且丰富多样的人类知识和认知库,以解决各种被认为很难由机器单独解决的任务。众包系统建立在私人或公共平台上,是部署各种需要人工智能的任务的流行手段。在这样的平台上进行任务部署需要确定适当的部署策略,以满足由请求者提供的部署参数(作为质量、延迟和成本的阈值),还需要分析可用于执行部署任务的劳动力。到目前为止,任务部署仍然是一个艰苦的手动过程,因为在决定如何组织工作人员、以何种风格以及以何种结构来满足部署参数方面,请求者几乎没有帮助。因此,请求者和工作者大多被限制在一个平台上,因为部署过程不容易跨平台移植。该项目研究了众包生态系统中位于多个利益相关者之间的中间层,通过允许简单灵活的部署约束和目标规范来帮助请求者部署众包任务,然后根据这些规范推荐部署策略。因此,该系统的开发可以实现跨平台部署过程的可移植性和重用。为了实现这些目标,该项目开发了一个名为SLOAN(可伸缩的、声明式的、优化驱动的、自适应的和统一的)的中间件系统,其中包含三个集成组件:(1)部署策略推荐引擎经过优化以适应生态系统中的多个涉众,并负责建模和向一批请求推荐部署策略。(2)劳动力分析引擎分析可用的劳动力,并将其馈送给推荐引擎,因为部署的任务将由工人承担。该引擎的输出是对工人偏好或人为因素的估计,例如工人的可用性,作为精确(离散)或不精确(间隔或概率分布函数)的信息。(3)结果聚合模块对部署任务的质量进行估计,然后反馈给其他两个引擎进行重新调整。它是由完全自动化或混合算法授权的,这些算法很少涉及机器算法中的人类智能。SLOAN的开发计划包括原则性建模、严格的算法设计、声明性框架开发、在多个真实世界平台内的部署和集成。斯隆的不同组件具有多目标离散优化和计算几何算法,以及适应机器学习的多方面建模技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Peer Learning Through Targeted Dynamic Groups Formation
通过有针对性的动态团体形成进行同伴学习
Accepted Tutorials at The Web Conference 2022
2022 年网络会议上接受的教程
  • DOI:
    10.1145/3487553.3547182
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tommasini, Riccardo;Basu Roy, Senjuti;Wang, Xuan;Wang, Hongwei;Ji, Heng;Han, Jiawei;Nakov, Preslav;Da San Martino, Giovanni;Alam, Firoj;Schedl, Markus
  • 通讯作者:
    Schedl, Markus
Guided Task Planning Under Complex Constraints
Cooperative Route Planning Framework for Multiple Distributed Assets in Maritime Applications
海事应用中多种分布式资产的协同路线规划框架
  • DOI:
    10.1145/3514221.3526131
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikookar, Sepideh;Sakharkar, Paras;Somasunder, Sathyanarayanan;Basu Roy, Senjuti;Bienkowski, Adam;Macesker, Matthew;Pattipati, Krishna R.;Sidoti, David
  • 通讯作者:
    Sidoti, David
Diversifying recommendations on sequences of sets
  • DOI:
    10.1007/s00778-022-00740-6
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sepideh Nikookar;M. Esfandiari;R. M. Borromeo;Paras Sakharkar;S. Amer-Yahia;Senjuti Basu Roy
  • 通讯作者:
    Sepideh Nikookar;M. Esfandiari;R. M. Borromeo;Paras Sakharkar;S. Amer-Yahia;Senjuti Basu Roy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Senjuti Basu Roy其他文献

Pathway-Finder: An Interactive Recommender System for Supporting Personalized Care Pathways
Pathway-Finder:支持个性化护理路径的交互式推荐系统
TRANS: Top-k Implementation Techniques of Minimum Effort Driven Faceted Search For Databases
TRANS:最小努力驱动的数据库分面搜索的 Top-k 实现技术
A holistic and principled approach for the empty-answer problem
解决空答案问题的整体和原则性方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Mottin;Alice Marascu;Senjuti Basu Roy;Gautam Das;Themis Palpanas;Yannis Velegrakis
  • 通讯作者:
    Yannis Velegrakis
Human Factors Modeling in Crowdsourcing
众包中的人为因素建模
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Amer;Senjuti Basu Roy;Gautam Das;Ioanna Lykourentzou;Habibur Rahman;Saravanan Thirumuruganathan
  • 通讯作者:
    Saravanan Thirumuruganathan
From Complex Object Exploration to Complex Crowdsourcing.
从复杂的对象探索到复杂的众包。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Amer;Senjuti Basu Roy
  • 通讯作者:
    Senjuti Basu Roy

Senjuti Basu Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Senjuti Basu Roy', 18)}}的其他基金

III: Small: Collaborative Research: An Optimization Framework for Designing Derived Attributes with Humans-in-the-loop
III:小:协作研究:利用人在环设计派生属性的优化框架
  • 批准号:
    2007935
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
CHS: Small: An Optimized Human-Machine Intelligence Framework for Single and Multi-Label Classification Tasks Through Active Learning
CHS:Small:通过主动学习实现单标签和多标签分类任务的优化人机智能框架
  • 批准号:
    1814595
  • 财政年份:
    2018
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant

相似海外基金

Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
  • 批准号:
    10104748
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Launchpad
SCC-CIVIC-FA Track B: Streamlining and Supporting Access to Public Assistance Programs in Louisiana
SCC-CIVIC-FA 轨道 B:简化和支持路易斯安那州的公共援助计划
  • 批准号:
    2322214
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
EAGER: SMART-DMSP: Streamlining Metadata, Automation, and Research Tracking for Data Management and Sharing Plans
EAGER:SMART-DMSP:简化数据管理和共享计划的元数据、自动化和研究跟踪
  • 批准号:
    2332353
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
I-Corps: A Framework for Streamlining the Development and Deployment of Generative Artificial Intelligence (AI) Models on Enterprise Data
I-Corps:简化企业数据生成人工智能 (AI) 模型的开发和部署的框架
  • 批准号:
    2335828
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
Integrated Photonics as a Service: Streamlining Photonic Component Development
集成光子学即服务:简化光子组件开发
  • 批准号:
    10073329
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Collaborative R&D
SSC-CIVIC-PG TRACK B: Streamlining and Supporting Access to Public Assistance Programs in Louisiana
SSC-CIVIC-PG 轨道 B:简化和支持路易斯安那州的公共援助计划
  • 批准号:
    2228726
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
Streamlining temperate phage engineering to facilitate precise in situ manipulation of gut microbiota
简化温带噬菌体工程以促进肠道微生物群的精确原位操作
  • 批准号:
    10507364
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
Streamlining facilities for access and preservation of Cultural and Heritage collections at the University of Leeds
简化利兹大学文化遗产收藏的获取和保存设施
  • 批准号:
    AH/V01191X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Research Grant
Streamlining temperate phage engineering to facilitate precise in situ manipulation of gut microbiota
简化温带噬菌体工程以促进肠道微生物群的精确原位操作
  • 批准号:
    10700151
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
TAXMAP - Distributed tax ledger technology, streamlining tax reconciliation for global B2B transactions.
TAXMAP - 分布式税务分类账技术,简化全球 B2B 交易的税务对账。
  • 批准号:
    10006243
  • 财政年份:
    2021
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了